This paper presents a signal decomposition and feature extraction technique for the health diagnosis of rotary machines, based on the empirical mode decomposition. Vibration signal measured from a defective rolling bearing is decomposed into a number of intrinsic mode functions (IMFs), with each IMF corresponding to a specific range of frequency components contained within the vibration signal. Two criteria, the energy measure and correlation measure, are investigated to determine the most representative IMF for extracting defect-induced characteristic features out of vibration signals. The envelope spectrum of the selected IMF is investigated as an indicator for both the existence and the specific location of structural defects within the bearing. Theoretical foundation of the technique is introduced, and its performance is experimentally verified.

1.
Cavacece
,
M.
, and
Introini
,
A.
, 2002, “
Analysis of Damage of Ball Bearings of Aeronautical Transmissions by Auto-Power Spectrum and Cross-Power Spectrum
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
180
185
.
2.
Sun
,
Q.
,
Chen
,
P.
,
Zhang
,
D.
, and
Xi
,
F.
, 2004, “
Pattern Recognition for Automatic Machinery Fault Diagnosis
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
2
), pp.
307
316
.
3.
McFadden
,
P.
, and
Smith
,
J.
, 1984, “
Vibration Monitoring of Rolling Element Bearings by the High Frequency Resonance Technique—A Review
,”
Tribol. Int.
0301-679X,
17
(
1
), pp.
3
10
.
4.
Holm-Hansen
,
B. T.
, and
Gao
,
R. X.
, 2000, “
Vibration Analysis of a Sensor-Integrated Ball Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
5
), pp.
384
392
.
5.
Chen
,
Z. S.
,
Yang
,
Y. M.
,
Hu
,
Z.
, and
Shen
,
G. J.
, 2006, “
Detecting and Predicting Early Faults of Complex Rotating Machinery Based on Cyclostationary Time Series Model
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
5
), pp.
666
671
.
6.
Burgess
,
P.
, 1988, “
Anti-Friction Bearing Fault Detection Using Envelope Detection
,”
ASME J. Vibr. Acoust.
0739-3717,
15
(
2
), pp.
77
82
.
7.
Toersen
,
H.
, 1998, “
Application of an Envelope Technique in the Detection of Ball Bearing Defects in a Laboratory Experiment
,”
Tribotest
,
4
(
3
), pp.
297
308
.
8.
Tse
,
P. T.
,
Peng
,
Y. H.
, and
Yam
,
R.
, 2001, “
Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
4
), pp.
303
310
.
9.
Yang
,
J. N.
,
Lei
,
Y.
,
Pan
,
S.
, and
Huang
,
N.
, 2003, “
System Identification of Linear Structure Based on Hilbert-Huang Spectral Analysis. Part 1: Normal Modes
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
32
, pp.
1443
1467
.
10.
Yang
,
J. N.
,
Lei
,
Y.
,
Pan
,
S.
, and
Huang
,
N.
, 2003, “
System Identification of Linear Structure Based on Hilbert-Huang Spectral Analysis. Part 2: Complex Modes
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
32
, pp.
1533
1554
.
11.
Yang
,
J. N.
,
Lei
,
Y.
,
Lin
,
S.
, and
Huang
,
N.
, 2004, “
Hilbert-Huang Based Approach for Structural Damage Detection
,”
J. Eng. Mech.
0733-9399,
130
(
1
), pp.
85
95
.
12.
Peng
,
Y.
, 2006, “
Empirical Mode Decomposition Based Time-Frequency Analysis for the Effective Detection of Tool Breakage
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
154
166
.
13.
Chen
,
J.
,
Yu
,
D.
, and
Yang
,
Y.
, 2006, “
A Fault Diagnosis Approach for Roller Bearings Based on EMD Method and AR Model
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
2
), pp.
350
362
.
14.
Liu
,
B.
,
Rienenschneider
,
S.
, and
Xu
,
Y.
, 2006, “
Gearbox Fault Diagnosis Using Empirical Mode Decomposition and Hilbert Spectrum
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
3
), pp.
718
734
.
15.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
, 1998, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
1364-5021,
454
, pp.
903
995
.
16.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
, 1999, “
A New View of Nonlinear Water Waves: The Hilbert Spectrum
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
417
457
.
17.
Huang
,
N. E.
,
Wu
,
M.
,
Long
,
S. R.
,
Shen
,
S.
,
Qi
,
W.
,
Gloersen
,
P.
, and
Fan
,
K.
, 2003, “
A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis
,”
Proc. R. Soc. London, Ser. A
1364-5021,
459
, pp.
2317
2345
.
18.
Yan
,
R.
, and
Gao
,
R. X.
, 2004, “
Enhanced Signal Demodulation for Machine Health Diagnosis
,”
Proceeding of Japan-USA Symposium on Flexible Automation
,
Denver, CO
, Paper No. UḺ074.
19.
Hahn
,
S. L.
, 1996,
Hilbert Transform in Signal Processing
,
Artech House, Inc.
,
Norwood, MA.
20.
Bendat
,
J. S.
, and
Piersol
,
A. G.
, 2000,
Random Data: Analysis and Measurement Procedures
, 3rd ed.,
Wiley
,
New York
.
You do not currently have access to this content.