The vibration time series of gear systems exhibit self-similarity. The time-series behavior is characterized by an exponent, known as the scaling exponent. An algorithm is proposed for the estimation of both global and local exponents, thus providing a means of examining the time-series fine structure. The proposed algorithm is applied to experimental data recorded from gear pairs with localized defects in the form of bending fatigue cracks. It is shown that an examination of the exponent empirical histogram allows detection of damage at an early stage and also provides an estimate of the defect magnitude.
Issue Section:
Research Papers
1.
Staszewski
, W. J.
, Worden
, K.
, and Tomlinson
, G. R.
, 1997, “Time-Frequency Analysis in Gearbox Fault Detection Using the Wigner-Ville Distribution and Pattern Recognition
,” Mech. Syst. Signal Process.
0888-3270, 11
(5
), pp. 673
–692
.2.
Staszewski
, W. J.
, and Tomlinson
, G. R.
, 1994, “Application of the Wavelet Transform to Fault Detection of a Spur Gear
,” Mech. Syst. Signal Process.
0888-3270, 8
(3
), pp. 289
–307
.3.
McFadden
, P. D.
, 1994, “Window Functions for the Calculation of the Time Domain Averages of the Vibration of the Individual Planet Gears and Sun Gear in an Epicyclic Gearbox
,” ASME J. Vibr. Acoust.
0739-3717, 116
, pp. 179
–187
.4.
Wang
, W.
, and Wong
, A.
, 2002, “Autoregressive Model-Based Gear Fault Diagnosis
,” ASME J. Vibr. Acoust.
0739-3717, 124
(2
), pp. 172
–179
.5.
Capdessus
, C.
, Sidahmed
, M.
, and Lacoume
, J. L.
, 2000, “Cyclostationary Processes: Application in Gear Faults Early Diagnosis
,” Mech. Syst. Signal Process.
0888-3270, 14
(3
), pp. 371
–385
.6.
Wang
, W.
, 2003, “An Evaluation of Some Emerging Techniques for Gear Fault Detection
,” Struct. Health Monit.
1475-9217, 2
(3
), pp. 225
–242
.7.
Robertson
, A. N.
, Farrar
, C. R.
, and Sohn
, H.
, 2003, “Singularity Detection for Structural Health Monitoring Using Holder Exponents
,” Mech. Syst. Signal Process.
0888-3270, 17
(6
), pp. 1163
–1184
.8.
Miao
, Q.
, and Makis
, V.
, 2005, “An Application of the Modulus Maxima Distribution in Machinery Condition Monitoring
,” J. Qual. Maint. Eng.
1355-2511, 11
(4
), pp. 375
–387
.9.
Peng
, Z. K.
, Chu
, F. L.
, and Tse
, P. W.
, 2007, “Singularity Analysis of the Vibration Signals by Means of Wavelet Modulus Maxima Method
,” Mech. Syst. Signal Process.
0888-3270, 21
, pp. 780
–794
.10.
Mandelbrot
, B. B.
, and Van Ness
, J. W.
, 1968, “Fractional Brownian Motions, Fractional Noises and Applications
,” SIAM Rev.
0036-1445 10
, 422
–437
.11.
Wornell
, G.
, 1996, Signal Processing With Fractals
, Prentice-Hall
, Englewood Cliffs, NJ
.12.
Hurst
, H. E.
, 1951, “Long-Term Storage Capacity of Reservoirs
,” Trans. Am. Soc. Civ. Eng.
0066-0604, 116
, pp. 770
–808
.13.
Schertzer
, D.
, Lovejoy
, S.
, Schmitt
, F.
, Chigirinskaya
, Y.
, and Marsan
, D.
, 1997, “Multifractal Cascade Dynamics and Turbulence Intermittency
,” Fractals
0218-348X, 5
(3
), pp. 427
–471
.14.
Turiel
, A.
, Mato
, G.
, Parga
, N.
, and Nadal
, J. P.
, 1998, “The Self-Similarity Properties of Natural Images Resemble Those of Turbulent Flows
,” Phys. Rev. Lett.
0031-9007, 80
, pp. 1098
–1101
.15.
Turiel
, A.
, and Pérez-Vicente
, C.
, 2003, “Multifractal Geometry in Stock Market Time-Series
,” Physica A
0378-4371, 332
, pp. 629
–649
.16.
Muzy
, J. F.
, Bacry
, E.
, and Arneodo
, A.
, 1991, “Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data
,” Phys. Rev. Lett.
0031-9007, 67
, pp. 3515
–3518
.17.
Leu
, J. S.
, and Papamarcou
, A.
, 1995, “On Estimating the Spectral Exponent of Fractional Brownian Motion
,” IEEE Trans. Inf. Theory
0018-9448, 41
(1
), pp. 233
–244
.18.
Flandrin
, P.
, 1989, “On the Spectrum of Fractional Brownian Motions
,” IEEE Trans. Inf. Theory
0018-9448, 35
(1
), pp. 197
–199
.19.
Peng
, C. K.
, Havlin
, S.
, Stanley
, H. E.
, and Goldberger
, A. L.
, 1994, “Mosaic Organization of DNA Nucleotides
,” Phys. Rev. E
1063-651X, 49
(2
), pp. 1685
–1689
.20.
Falconer
, K.
, 2003, Fractal Geometry, Mathematical Foundations and Applications
, Wiley
, New York
.21.
Davies
, R. B.
, and Harte
, D. S.
, 1987, “Tests for Hurst Effect
,” Biometrika
0006-3444, 74
(1
), pp. 95
–101
.22.
Loutridis
, S. J.
, and Trochidis
, A.
, 2004, “Classification of Gear Faults Using Hoelder Exponents
,” Mech. Syst. Signal Process.
0888-3270, 18
(5
), pp. 1009
–1030
.23.
Kantelhardt
, J. W.
, Zschiegner
, S. A.
, Koscielny-Bunde
, E.
, Havlin
, S.
, Bunde
, A.
, and Stanley
, H. E.
, 2002, “Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series
,” Physica A
0378-4371, 316
, pp. 87
–114
.24.
Mallat
, M.
, 1998, A Wavelet Tour of Signal Processing
, Academic
, San Diego
.25.
Struzik
, Z. R.
, 2000, “Determining Local Singularity Strengths and Their Spectra With the Wavelet Transform
,” Fractals
0218-348X, 8
(2
), pp. 163
–179
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.