The vibration time series of gear systems exhibit self-similarity. The time-series behavior is characterized by an exponent, known as the scaling exponent. An algorithm is proposed for the estimation of both global and local exponents, thus providing a means of examining the time-series fine structure. The proposed algorithm is applied to experimental data recorded from gear pairs with localized defects in the form of bending fatigue cracks. It is shown that an examination of the exponent empirical histogram allows detection of damage at an early stage and also provides an estimate of the defect magnitude.

1.
Staszewski
,
W. J.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
, 1997, “
Time-Frequency Analysis in Gearbox Fault Detection Using the Wigner-Ville Distribution and Pattern Recognition
,”
Mech. Syst. Signal Process.
0888-3270,
11
(
5
), pp.
673
692
.
2.
Staszewski
,
W. J.
, and
Tomlinson
,
G. R.
, 1994, “
Application of the Wavelet Transform to Fault Detection of a Spur Gear
,”
Mech. Syst. Signal Process.
0888-3270,
8
(
3
), pp.
289
307
.
3.
McFadden
,
P. D.
, 1994, “
Window Functions for the Calculation of the Time Domain Averages of the Vibration of the Individual Planet Gears and Sun Gear in an Epicyclic Gearbox
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
179
187
.
4.
Wang
,
W.
, and
Wong
,
A.
, 2002, “
Autoregressive Model-Based Gear Fault Diagnosis
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
172
179
.
5.
Capdessus
,
C.
,
Sidahmed
,
M.
, and
Lacoume
,
J. L.
, 2000, “
Cyclostationary Processes: Application in Gear Faults Early Diagnosis
,”
Mech. Syst. Signal Process.
0888-3270,
14
(
3
), pp.
371
385
.
6.
Wang
,
W.
, 2003, “
An Evaluation of Some Emerging Techniques for Gear Fault Detection
,”
Struct. Health Monit.
1475-9217,
2
(
3
), pp.
225
242
.
7.
Robertson
,
A. N.
,
Farrar
,
C. R.
, and
Sohn
,
H.
, 2003, “
Singularity Detection for Structural Health Monitoring Using Holder Exponents
,”
Mech. Syst. Signal Process.
0888-3270,
17
(
6
), pp.
1163
1184
.
8.
Miao
,
Q.
, and
Makis
,
V.
, 2005, “
An Application of the Modulus Maxima Distribution in Machinery Condition Monitoring
,”
J. Qual. Maint. Eng.
1355-2511,
11
(
4
), pp.
375
387
.
9.
Peng
,
Z. K.
,
Chu
,
F. L.
, and
Tse
,
P. W.
, 2007, “
Singularity Analysis of the Vibration Signals by Means of Wavelet Modulus Maxima Method
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
780
794
.
10.
Mandelbrot
,
B. B.
, and
Van Ness
,
J. W.
, 1968, “
Fractional Brownian Motions, Fractional Noises and Applications
,”
SIAM Rev.
0036-1445
10
,
422
437
.
11.
Wornell
,
G.
, 1996,
Signal Processing With Fractals
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
Hurst
,
H. E.
, 1951, “
Long-Term Storage Capacity of Reservoirs
,”
Trans. Am. Soc. Civ. Eng.
0066-0604,
116
, pp.
770
808
.
13.
Schertzer
,
D.
,
Lovejoy
,
S.
,
Schmitt
,
F.
,
Chigirinskaya
,
Y.
, and
Marsan
,
D.
, 1997, “
Multifractal Cascade Dynamics and Turbulence Intermittency
,”
Fractals
0218-348X,
5
(
3
), pp.
427
471
.
14.
Turiel
,
A.
,
Mato
,
G.
,
Parga
,
N.
, and
Nadal
,
J. P.
, 1998, “
The Self-Similarity Properties of Natural Images Resemble Those of Turbulent Flows
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
1098
1101
.
15.
Turiel
,
A.
, and
Pérez-Vicente
,
C.
, 2003, “
Multifractal Geometry in Stock Market Time-Series
,”
Physica A
0378-4371,
332
, pp.
629
649
.
16.
Muzy
,
J. F.
,
Bacry
,
E.
, and
Arneodo
,
A.
, 1991, “
Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data
,”
Phys. Rev. Lett.
0031-9007,
67
, pp.
3515
3518
.
17.
Leu
,
J. S.
, and
Papamarcou
,
A.
, 1995, “
On Estimating the Spectral Exponent of Fractional Brownian Motion
,”
IEEE Trans. Inf. Theory
0018-9448,
41
(
1
), pp.
233
244
.
18.
Flandrin
,
P.
, 1989, “
On the Spectrum of Fractional Brownian Motions
,”
IEEE Trans. Inf. Theory
0018-9448,
35
(
1
), pp.
197
199
.
19.
Peng
,
C. K.
,
Havlin
,
S.
,
Stanley
,
H. E.
, and
Goldberger
,
A. L.
, 1994, “
Mosaic Organization of DNA Nucleotides
,”
Phys. Rev. E
1063-651X,
49
(
2
), pp.
1685
1689
.
20.
Falconer
,
K.
, 2003,
Fractal Geometry, Mathematical Foundations and Applications
,
Wiley
,
New York
.
21.
Davies
,
R. B.
, and
Harte
,
D. S.
, 1987, “
Tests for Hurst Effect
,”
Biometrika
0006-3444,
74
(
1
), pp.
95
101
.
22.
Loutridis
,
S. J.
, and
Trochidis
,
A.
, 2004, “
Classification of Gear Faults Using Hoelder Exponents
,”
Mech. Syst. Signal Process.
0888-3270,
18
(
5
), pp.
1009
1030
.
23.
Kantelhardt
,
J. W.
,
Zschiegner
,
S. A.
,
Koscielny-Bunde
,
E.
,
Havlin
,
S.
,
Bunde
,
A.
, and
Stanley
,
H. E.
, 2002, “
Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series
,”
Physica A
0378-4371,
316
, pp.
87
114
.
24.
Mallat
,
M.
, 1998,
A Wavelet Tour of Signal Processing
,
Academic
,
San Diego
.
25.
Struzik
,
Z. R.
, 2000, “
Determining Local Singularity Strengths and Their Spectra With the Wavelet Transform
,”
Fractals
0218-348X,
8
(
2
), pp.
163
179
.
You do not currently have access to this content.