The present study focuses on the nonlinear analysis of the dynamical behavior of layered structures, including interfacial friction in the presence of the stick-slip phenomenon and large deformation. To achieve a proper outlook for the two-layer structure's behavior, it is essential to precisely realize the mechanisms of motion. Taking the dry friction into account, coupled equations of the transversal and longitudinal large vibration of two-layers are derived and nondimensionalized. Furthermore, the free and forced vibration of the aforementioned system is investigated. From the results of the numerical simulation, it is observed that there exist quasi-periodic and stick–slip chaotic motions in the system. The results demonstrate that the single mode method usually utilized may lead to incorrect conclusions and, instead, the higher order mode method should be employed. A comparative study with ANSYS is developed to verify the accuracy of the proposed approach.

References

1.
Jei
,
Y. G.
,
Kim
,
J. S.
, and
Hong
S. W.
,
1999
, “
A New Lateral Vibration Damper Using Leaf Springs
,”
ASME J. Vibr. Acoust.
,
121
(
3
), p.
343
.10.1115/1.2893986
2.
Osipenko
,
M. A.
,
Nyashin
,
Yu. I.
, and
Rudakov
,
R. N.
,
2003
, “
A Contact Problem in the Theory of Leaf Spring Bending
,”
Int. J. Solids Struct.
,
40
(
12
), pp.
3129
3136
.10.1016/S0020-7683(03)00112-4
3.
Oh
,
S. D.
,
Jung
,
W. W.
,
Bae
,
D. H.
,
Lee
,
Y. Z.
,
2005
, “
Friction and Wear Characteristics for Automotive Leaf Spring Materials Due to the Influence of the Residual Stress
,”
Key Eng. Mater.
,
297–300
, pp.
1388
1394
.10.4028/www.scientific.net/KEM.297-300.1388
4.
Chen
,
W.
, and
Deng
,
X.
,
2005
, “
Structural Damping Caused by Micro-Slip Along Frictional Interfaces
,”
Int. J. Mech. Sci.
,
47
, pp.
1191
1211
.10.1016/j.ijmecsci.2005.04.005
5.
Goodman
,
L. E.
, and
Klumpp
,
J. H.
,
1956
, “
Analysis of Slip Damping With Reference to Turbine Blade Vibration
,”
ASME J. Appl. Mech.
,
23
, pp.
421
429
.
6.
Badrakhan
,
F.
,
1994
, “
Slip Damping in Vibrating Layered Beams and Leaf Springs: Energy Dissipated and Optimum Considerations
,”
J. Sound Vib.
,
174
(
1
), pp.
91
103
.10.1006/jsvi.1994.1262
7.
Damisa
,
O.
,
Olunloyo
, V
. O. S.
,
Osheku
,
C. A.
, and
Oyediran
,
A. A.
,
2008
, “
Dynamic Analysis of Slip Damping in Clamped Layered Beams With Non-Uniform Pressure Distribution at the Interface
,”
J. Sound Vib.
,
309
, pp.
349
374
.10.1016/j.jsv.2007.03.066
8.
Olunloyo
, V
. O. S.
,
Damisa
,
O.
,
Osheku
,
C. A.
, and
Oyediran
,
A. A.
,
2010
, “
Analysis of the Effects of Laminate Depth and Material Properties on the Damping Associated With Layered Structures in a Pressurized Environment
,”
Trans, Can. Soc. Mech. Eng.,
34
(
2
), pp.
165
196
.
9.
Li
,
Q.
, and
Li
,
W.
,
2004
, “
A Contact Finite Element Algorithm for the Multileaf Spring of Vehicle Suspension Systems
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
218
, pp.
305
314
.10.1243/095440704322955821
10.
Krys'ko
,
V. A.
,
Koch
,
M. I.
,
Zhigalov
,
M. V.
, and
Krys'ko
,
A. V.
,
2012
, “
Chaotic Phase Synchronization of Vibrations of Multilayer Beam Structures
,”
J. Appl. Mech. Tech. Phys.
,
53
(
3
), pp.
451
459
.10.1134/S0021894412030182
11.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
Appl. Mech. Rev.
,
47
, pp.
227
253
.10.1115/1.3111080
12.
Brockley
,
C. A.
, and
Ko
,
P. L.
,
1970
, “
Quasi-Harmonic Friction-Induced Vibration
,”
ASME J. Lubr. Technol.
,
89
, pp.
550
556
.10.1115/1.3451469
13.
Kang
,
J.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2009
, “
Oscillation Pattern of Stick-Slip Vibrations
,”
Int. J. Non-Linear Mech.
,
44
, pp.
820
828
.10.1016/j.ijnonlinmec.2009.05.002
14.
Awrejcewicz
,
J.
, and
Sendkowski
,
D.
,
2005
, “
Stick-Slip Chaos Detection in Coupled Oscillators With Friction
,”
Int. J. Solids Struct.
,
42
, pp.
5669
5682
.10.1016/j.ijsolstr.2005.03.018
15.
Han
,
Q.
, and
Zheng
,
X.
,
2005
, “
Chaotic Response of a Large Deflection Beam and Effect of the Second Order Mode
,”
Eur. J. Mech. A/Solids
,
24
, pp.
944
956
.10.1016/j.euromechsol.2005.04.003
16.
Heuer
,
R.
, and
Adam
,
C.
,
2000
, “
Piezoelectric Vibrations of Composite Beams With Interlayer Slip
,”
Acta Mech.
,
140
, pp.
247
263
.10.1007/BF01182514
17.
Ames
,
W. F.
,
1977
,
Numerical Methods for Partial Differential Equations
, 2nd ed.,
Academic
,
New York
.
18.
Shampine
,
L. F.
,
Gladwell
, I
.
, and
Thompson
,
S.
,
2003
,
Solving ODEs With MATLAB
,
Cambridge University Press
,
Cambridge, UK
.
19.
Stefanski
,
A.
, and
Kapitaniak
,
T.
,
2000
, “
Using Chaos Synchronization to Estimate the Largest Lyapunov Exponent of Nonsmooth Systems
,”
Discrete Dyn. Nat. Soc.
,
4
, pp.
207
215
.10.1155/S1026022600000200
20.
ANSYS® Academic Research, Release 14.0
, “
Help System, Coupled Field Analysis Guide
,” Ansys, Inc.
You do not currently have access to this content.