Drillstrings used for oil and gas exploration and extraction consist of a drillpipe (slender columns on the order of 3–5 km long), drill collars (DCs) (thick-walled large-diameter pipes), stabilizers (cylindrical elements with short sections and diameter near that of the borehole), and a rock-cutting tool that uses rotational energy to penetrate the soil. Several types of vibrations ensue from these motions and play a major role in added costs resulting from unforeseen events such as abandoning holes, replacing bits, and fishing severed bottom-hole assemblies (BHAs). It is thus of critical importance to understand, predict, and mitigate the severe vibrations experienced by drillstrings and BHA to optimize drilling time while lowering fuel consumption and related emissions of NOX and/or other pollutants. In this paper, we present a dynamical analysis of the behavior of drillstrings due to the violent lateral vibrations (LVs) DCs may experience as a result of rotating drillstrings. The behavior is represented by a system of two coupled nonlinear ordinary equations that are integrated numerically with a finite element analysis based on Timoshenko beam (TB) formulation combined to a modal condensation technique to reduce the computational time. Various nonlinear dynamical analysis tools, such as frequency spectrum, Poincaré maps, bifurcation diagrams, and Lyapunov exponents (LE), are used to characterizing the response. The DC section between two stabilizers is essentially modeled as a Jeffcott rotor with nonlinearity effects included. The model builds on two earlier models for the finite element formulation and the treatment of chaotic vibrations. Nonlinearity appears in the form of drillstring/borehole contact force, friction, and quadratic damping. The DC flexibility is included to allow investigation of bending modes. The analysis takes into account the length of time to steady state, number of subintervals, presence of rigid body modes, number of finite elements, and modal coordinates. Simulations results indicate that by varying operating conditions, a spectrum of behaviors from periodic to chaotic may be observed.
Skip Nav Destination
Article navigation
April 2015
Research-Article
Modal Reduction Technique for Predicting the Onset of Chaotic Behavior due to Lateral Vibrations in Drillstrings
Kathira Mongkolcheep,
Kathira Mongkolcheep
Department of Mechanical Engineering,
e-mail: k.mongkolcheep@gmail.com
Texas A&M University
,College Station, TX 77845
e-mail: k.mongkolcheep@gmail.com
Search for other works by this author on:
Annie Ruimi,
Annie Ruimi
1
Department of Mechanical Engineering,
Education City,
P.O. Box 23874,
Doha,
e-mail: annie.ruimi@qatar.tamu.edu
Texas A&M University at Qatar
,241 D Texas A&M Engineering Building
,Education City,
P.O. Box 23874,
Doha,
Qatar
e-mail: annie.ruimi@qatar.tamu.edu
1Corresponding author.
Search for other works by this author on:
Alan Palazzolo
Alan Palazzolo
Department of Mechanical Engineering,
e-mail: a-palazzolo@tamu.edu
Texas A&M University
,College Station, TX 77845
e-mail: a-palazzolo@tamu.edu
Search for other works by this author on:
Kathira Mongkolcheep
Department of Mechanical Engineering,
e-mail: k.mongkolcheep@gmail.com
Texas A&M University
,College Station, TX 77845
e-mail: k.mongkolcheep@gmail.com
Annie Ruimi
Department of Mechanical Engineering,
Education City,
P.O. Box 23874,
Doha,
e-mail: annie.ruimi@qatar.tamu.edu
Texas A&M University at Qatar
,241 D Texas A&M Engineering Building
,Education City,
P.O. Box 23874,
Doha,
Qatar
e-mail: annie.ruimi@qatar.tamu.edu
Alan Palazzolo
Department of Mechanical Engineering,
e-mail: a-palazzolo@tamu.edu
Texas A&M University
,College Station, TX 77845
e-mail: a-palazzolo@tamu.edu
1Corresponding author.
Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received December 1, 2013; final manuscript received September 29, 2014; published online November 14, 2014. Assoc. Editor: Philip Bayly.
J. Vib. Acoust. Apr 2015, 137(2): 021003 (11 pages)
Published Online: April 1, 2015
Article history
Received:
December 1, 2013
Revision Received:
September 29, 2014
Online:
November 14, 2014
Citation
Mongkolcheep, K., Ruimi, A., and Palazzolo, A. (April 1, 2015). "Modal Reduction Technique for Predicting the Onset of Chaotic Behavior due to Lateral Vibrations in Drillstrings." ASME. J. Vib. Acoust. April 2015; 137(2): 021003. https://doi.org/10.1115/1.4028882
Download citation file:
Get Email Alerts
Related Articles
A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems
J. Comput. Nonlinear Dynam (April,2011)
Analysis of Friction-Induced Limit Cycling in an Experimental Drill-String System
J. Dyn. Sys., Meas., Control (December,2004)
Torsional Vibrations and Nonlinear Dynamic Characteristics of Drill Strings and Stick-Slip Reduction Mechanism
J. Comput. Nonlinear Dynam (August,2019)
A Finite Element Method With Full Bit-Force Modeling to Analyze Drillstring Vibration
J. Dyn. Sys., Meas., Control (September,2017)
Related Proceedings Papers
A Modal Approach for Chaotic Vibrations of a Drillstring
IDETC-CIE2009
Related Chapters
Applied Drilling Mechanics
Mechanics of Drillstrings and Marine Risers
Drilling of Engineering Ceramics with Combination of Ultrasonic Vibrations and Abrasive Slurry
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
3D Quantitative Simulation of Guide Trace in Guided Drilling
Geological Engineering: Proceedings of the 1 st International Conference (ICGE 2007)