Component miniaturization and reduced power requirements in sensors have enabled growth in the field of low-power ambient vibration energy harvesting. This work aims to increase bandwidth and power output beyond current techniques by inducing chaotic nonlinear phenomena and applying a low-power controller based on the method of Ott, Grebogi, and Yorke (OGY) to stabilize a chosen periodic orbit. Previously, researchers used a nonlinear piezomagnetoelastic beam in search of a large amplitude broadband voltage response, but chaos was strictly avoided. These large amplitude responses can deteriorate over time into low energy chaotic oscillations. Including chaos as a desirable property allows small perturbations to alter the behavior of a system dramatically, improving the dynamic response for energy harvesting. The nonlinear piezomagnetoelastic beam element described by a Duffing oscillator is extended to embrace chaotic motion more actively. By driving motion along a chaotic attractor, even single frequency excitation results in a theoretically infinite number of unstable periodic orbits that can be stabilized using small control inputs. The chosen orbit will be accessible from a large range of excitation frequencies and can be dynamically changed in real-time, potentially expanding the bandwidth of operation.

References

1.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.10.1088/0964-1726/16/3/R01
2.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
3.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
4.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.10.1103/PhysRevLett.64.1196
5.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
205
.10.1177/0583102404043275
6.
IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society
,
1988
, “IEEE Standard on Piezoelectricity,” IEEE, New York, Standard No.
ANSI/IEEE
Standard No. 176-1987.10.1109/IEEESTD.1988.79638
7.
Ng
,
T.-H.
, and
Liao
,
W.-H.
,
2004
, “
Feasibility Study of a Self-Powered Piezoelectric Sensor
,”
Proc. SPIE
5389
, pp.
377
388
.10.1117/12.539706
8.
Ng
,
T. H.
, and
Liao
,
W. H.
,
2005
, “
Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
785
797
.10.1177/1045389X05053151
9.
Tayahi
,
M. B.
,
Johnson
,
B.
,
Holtzman
,
M.
, and
Cadet
,
G.
,
2005
, “
Piezoelectric Materials for Powering Remote Sensors
,”
24th IEEE International Performance, Computing, and Communications Conference
(
IPCCC 2005
), Phoenix, AZ, Apr. 7–9, pp.
383
386
.10.1109/PCCC.2005.1460592
10.
Han
,
J.
,
von Jouanne
,
A.
,
Le
,
T.
,
Mayaram
,
K.
, and
Fiez
,
T. S.
,
2004
, “
Novel Power Conditioning Circuits for Piezoelectric Micropower Generators
,”
19th Annual IEEE Conference on Applied Power Electronics Conference and Exposition
(
APEC '04
), Anaheim, CA, Feb. 22–26, pp.
1541
1546
.10.1109/APEC.2004.1296069
11.
Ottman
,
G. K.
,
Hofmann
,
H. F.
, and
Lesieutre
,
G. A.
,
2003
, “
Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode
,”
IEEE Trans. Power Electron.
,
18
(
2
), pp.
696
703
.10.1109/TPEL.2003.809379
12.
Lesieutre
,
G. A.
,
Ottman
,
G. K.
, and
Hofmann
,
H. F.
,
2004
, “
Damping as a Result of Piezoelectric Energy Harvesting
,”
J. Sound Vib.
,
269
(
3–5
), pp.
991
1001
.10.1016/S0022-460X(03)00210-4
13.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2004
, “
High Performance Piezoelectric Vibration Energy Reclamation
,”
Proc. SPIE
,
5390
, pp.
379
387
.10.1117/12.532709
14.
Badel
,
A.
,
Guyomar
,
D.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Efficiency Enhancement of a Piezoelectric Energy Harvesting Device in Pulsed Operation by Synchronous Charge Inversion
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
889
901
.10.1177/1045389X05053150
15.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason., Ferroelectri., Freq. Control
,
52
(
4
), pp.
584
595
.10.1109/TUFFC.2005.1428041
16.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
(
3
), pp.
987
998
.10.1016/j.jsv.2005.08.018
17.
Shahruz
,
S. M.
,
2006
, “
Limits of Performance of Mechanical Band-Pass Filters Used in Energy Scavenging
,”
J. Sound Vib.
,
293
(
1–2
), pp.
449
461
.10.1016/j.jsv.2005.09.022
18.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
,
Hajj
,
M. R.
, and
Najar
,
F.
,
2012
, “
Energy Harvesting From a Multifrequency Response of a Tuned Bending-Torsion System
,”
Smart Mater. Struct.
,
21
(
7
), p.
075029
.10.1088/0964-1726/21/7/075029
19.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2008
, “
Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure
,”
Proc. SPIE,
6928
, p.
69280I
.10.1117/12.776211
20.
Renaud
,
M.
,
Fiorini
,
P.
, and
Hoof
,
C. V.
,
2007
, “
Optimization of a Piezoelectric Unimorph for Shock and Impact Energy Harvesting
,”
Smart Mater. Struct.
,
16
(
4
), p.
1125
.10.1088/0964-1726/16/4/022
21.
Cavallier
,
B.
,
Berthelot
,
P.
,
Nouira
,
H.
,
Foltete
,
E.
,
Hirsinger
,
L.
, and
Ballandras
,
S.
,
2005
, “
Energy Harvesting Using Vibrating Structures Excited by Shock
,” IEEE Ultrasonics Symposium (
ULTSYM
), Rotterdam, Sept. 18–21, pp.
943
945
.10.1109/ULTSYM.2005.1603006
22.
Moss
,
S.
,
Barry
,
A.
,
Powlesland
,
I.
,
Galea
,
S.
, and
Carman
,
G. P.
,
2010
, “
A Low Profile Vibro-Impacting Energy Harvester With Symmetrical Stops
,”
Appl. Phys. Lett.
,
97
(
27
), p.
234101
.10.1063/1.3521265
23.
Soliman
,
M. S. M.
,
Abdel-Rahman
,
E. M.
,
El-Saadany
,
E. F.
, and
Mansour
,
R. R.
,
2008
, “
A Wideband Vibration-Based Energy Harvester
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115021
.10.1088/0960-1317/18/11/115021
24.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2011
, “
Vibro-Impact Dynamics of a Piezoelectric Energy Harvester
,” 28th IMAC, A Conference and Exposition on Structural Dynamics (
IMAC-XXVIII
), Jacksonville, FL, Feb. 1–4, pp.
273
280
.10.1007/978-1-4419-9716-6_25
25.
Lallart
,
M.
,
Anton
,
S. R.
, and
Inman
,
D. J.
,
2010
, “
Frequency Self-Tuning Scheme for Broadband Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
9
), pp.
897
906
.10.1177/1045389X10369716
26.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
27.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.10.1016/j.jsv.2010.11.018
28.
Yu
,
X.
,
Chen
,
G.
,
Xia
,
Y.
,
Song
,
Y.
, and
Cao
,
Z.
,
2001
, “
An Invariant-Manifold-Based Method for Chaos Control
,”
IEEE Trans. Circuits Syst.
,
48
(
8
), pp.
930
937
.10.1109/81.940183
29.
Shinbrot
,
T.
,
Grebogi
,
C.
,
Ott
,
E.
, and
Yorke
,
J. A.
,
1993
, “
Using Small Perturbations to Control Chaos
,”
Nature
,
363
(
6428
), pp.
411
417
.10.1038/363411a0
30.
Vincent
,
T. L.
,
1997
, “
Controllable Targets Near a Chaotic Attractor
,”
Mathematical Modeling: Control and Chaos
, 8th ed.,
K.
Judd
,
A. I.
Mees
,
K. L.
Teo
, and
T. L.
Vincent
, eds.,
Birkhuser
,
Boston
, pp.
260
277
.
31.
Obradovic
,
D.
, and
Lenz
,
H.
,
1996
, “
When is OGY More Than Just Pole Placement
,”
Int. J. Bifurcation Chaos
,
7
(
3
), pp.
691
699
.10.1142/S0218127497000480
32.
Yu
,
X.
,
Chen
,
G.
,
Song
,
Y.
,
Cao
,
Z.
, and
Xia
,
Y.
,
2000
, “
A Generalized OGY Method for Controlling Higher Order Chaotic System
,”
39th IEEE Conference on Decision and Control
(
CDC
), Sydney, Australia, Dec. 12–15, pp.
2054
2059
.10.1109/CDC.2000.914096
33.
Paskota
,
M.
,
1996
, “
On Local Control of Chaos: The Neighbourhood Size
,”
Int. J. Bifurcation Chaos
,
6
(
1
), pp.
169
178
.10.1142/S0218127496001910
34.
Holmes
,
P.
,
1979
, “
Global Bifurcations and Chaos in the Forced Oscillations of Buckled Structures
,”
IEEE Conference on Decision and Control
(
CDC
), San Diego, CA, Jan. 10–12, pp.
181
185
.10.1109/CDC.1978.267916
35.
Moon
,
F. C.
, and
Holmes
,
P.
,
1979
, “
A Magnetoelastic Strange Attractor
,”
J. Sound Vib.
,
65
(
2
), pp.
275
296
.10.1016/0022-460X(79)90520-0
36.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.10.1115/1.4029076
37.
Cvitanovic
,
P.
,
Artuso
,
R.
,
Dahlqvist
,
P.
,
Mainieri
,
R.
,
Tanner
,
G.
,
Vattay
,
G.
,
Whelan
,
N.
, and
Wirzba
,
A.
,
2013
,
Chaos: Classical and Quantum
, 11th ed.,
Niels Bohr Institute
,
Copenhagen
.
38.
Strogatz
,
S. H.
,
1994
,
Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry, and Engineering
,
Perseus Books
,
Reading, MA
.
You do not currently have access to this content.