Violent drillstring vibrations in a well should be suppressed to prevent premature failure of the drillstring parts and borehole wall and enhance the drilling process. This paper presents novel centralized impact dampers and torsional vibration dampers for lateral and torsional stick–slip vibration suppression which will function well in the harsh environment in the well due to their all-metal construction. A drillstring vibration model is used in this paper to simulate coupled lateral and torsional vibrations of the drillstring with impact and torsional dampers installed in the drill collar (DC). The high-fidelity model utilizes Timoshenko beam finite elements (FEs) and includes stress-stiffening effects to account for the gravity and axial loading effect on the transverse string stiffness. The rotational motions of the impactors result from dry friction tangential contact forces that occur when they contact the DC or sub. The tangential forces utilize a nonlinear Hertzian contact restoring force and a nonlinear, viscous contact damping force, in place of the typical coefficient of restitution (COR) model that cannot provide the required normal and tangential contact forces. The primary conclusions drawn from the simulation results are: (1) both the lateral vibration of the drillstring that is close to the bending critical speeds and the vibration induced by destabilizing forces can be suppressed by impact dampers and (2) the torsional stick–slip motion of the drillstring can be mitigated by the torsional damper.

References

1.
Jansen
,
J. D.
, and
van den Steen
,
L.
,
1995
, “
Active Damping of Self-Excited Torsional Vibrations in Oil Well Drillstrings
,”
J. Sound Vib.
,
179
(
4
), pp.
647
668
.
2.
Sowers
,
S. F.
,
Dupriest
,
F. E.
,
Bailey
,
J. R.
, and
Wang
,
L.
,
2009
, “
Use of Roller Reamers Improve Drilling Performance in Wells Limited by Bit and Bottomhole Assembly Vibrations
,”
SPE/IADC Drilling Conference and Exhibition
,
Amsterdam, The Netherlands
, Mar. 17–19,
SPE
Paper No. 119375-MS, pp.
405
412
.
3.
Kyllingstad
,
A.
, and
Halsey
,
G. W.
,
1988
, “
A Study of Slip/Stick Motion of the Bit
,”
SPE Drill. Eng.
,
3
(04), pp.
369
373
.
4.
Liao
,
C.-M.
,
Balachandran
,
B.
,
Karkoub
,
M.
, and
Abdel-Magid
,
Y. L.
,
2011
, “
Drill-String Dynamics: Reduced-Order Models and Experimental Studies
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041008
.
5.
Vlajic
,
N.
,
Liao
,
C.-M.
,
Karki
,
H.
, and
Balachandran
,
B.
,
2013
, “
Draft: Stick-Slip Motions of a Rotor-Stator System
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021005
.
6.
Dawson
,
R.
,
Lin
,
Y. Q.
, and
Spanos
,
P. D.
,
1987
, “
Drill String Stick-Slip Oscillations
,”
SEM Spring Conference on Experimental Mechanics
, Houston, TX, June 14–19, pp.
590
595
.
7.
Brett
,
J. F.
,
1992
, “
The Genesis of Bit-Induced Torsional Drillstring Vibrations
,”
SPE Drill. Eng.
,
7
(03), pp.
168
174
.
8.
Leine
,
R. I.
,
van Campen
,
D. H.
, and
Keultjes
,
W. J. G.
,
2002
, “
Stick-Slip Whirl Interaction in Drillstring Dynamics
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
209
220
.
9.
Jansen
,
J. D.
,
1991
, “
Non-Linear Rotor Dynamics as Applied to Oilwell Drillstring Vibrations
,”
J. Sound Vib.
,
147
(
1
), pp.
115
135
.
10.
Bailey
,
J. R.
,
Biediger
,
E.
,
Sundararaman
,
S.
,
Carson
,
A. D.
,
Elks
,
W. C.
, and
Dupriest
,
F. E.
,
2008
, “
Development and Application of a BHA Vibrations Model
,”
International Petroleum Technology Conference
(IPTC), Kuala Lumpur, Malaysia, Dec. 3–5, Paper No. IPTC 12737.
11.
Bailey
,
J. R.
,
Elsborg
,
C. C.
,
James
,
R. W.
,
Pastusek
,
P.
,
Prim
,
M. T.
, and
Watson
,
W. W.
,
2013
, “
Design Evolution of Drilling Tools to Mitigate Vibrations
,”
SPE Drill. Completion
,
28
(04), pp.
350
369
.
12.
Moore
,
J. J.
,
Palazzolo
,
A. B.
,
Gadangi
,
R.
,
Nale
,
T. A.
,
Klusman
,
S. A.
,
Brown
,
G. V.
, and
Kascak
,
A. F.
,
1995
, “
A Forced Response Analysis and Application of Impact Dampers to Rotordynamic Vibration Suppression in a Cryogenic Environment
,”
ASME J. Vib. Acoust.
,
117
(
3A
), pp.
300
310
.
13.
McElhaney
,
J. M.
,
Palazzolo
,
A.
, and
Kascak
,
A.
,
1997
, “
Modeling and Simulation Methods for MDOF Structures and Rotating Machinery With Impact Dampers
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), pp.
436
446
.
14.
Goldsmith
,
W.
,
1960
,
Impact: The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold, Ltd.
,
London, UK
.
15.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK.
16.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.
17.
Nelson
,
H. D.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
(
4
), pp.
793
803
.
18.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2001
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
19.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.