An inverse direct time domain boundary element method (IDTBEM) is proposed for the reconstruction of transient acoustic field radiated by arbitrarily shaped sources. The method is based on the theory of direct time domain boundary element method (DTBEM), which is free from the calculation of hypersingular integrals, and thus, its reconstruction process is relatively simple and easy to implement. However, the formulations of DTBEM cannot be used directly for the reconstruction of transient acoustic field, and therefore, new formulations with a modified time axis are derived. With these new formulations, a linear system of equations is formed and the reconstruction is performed in a marching-on-time (MOT) way. Meanwhile, to deal with the ill-posedness involved in the inverse process, the truncated singular value decomposition (TSVD) is employed. Numerical simulations with three examples of a sphere, a cylinder, and a simplified car model are carried out to verify the validity of IDTBEM, and the results demonstrate that the IDTBEM is effective in reconstructing the transient acoustic fields radiated by arbitrarily shaped sources in both time and space domains.

References

1.
Williams
,
E. G.
, and
Maynard
,
J. D.
,
1980
, “
Holographic Imaging Without the Wavelength Resolution Limit
,”
Phys. Rev. Lett.
,
45
(
7
), pp.
554
557
.
2.
Williams
,
E. G.
,
Maynard
,
J. D.
, and
Skudrzky
,
E.
,
1980
, “
Sound Source Reconstructions Using a Microphone Array
,”
J. Acoust. Soc. Am.
,
68
(
1
), pp.
340
344
.
3.
Williams
,
E. G.
,
1999
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
,
Academic Press
,
London
, Chap. 3.
4.
Gardner
,
B. K.
, and
Bernhard
,
R. J.
,
1988
, “
A Noise Source Identification Technique Using an Inverse Helmholtz Integral Equation Method
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
1
), pp.
84
90
.
5.
Veronesi
,
W. A.
, and
Maynard
,
J. D.
,
1989
, “
Digital Holographic Reconstruction of Sources With Arbitrarily Shaped Surfaces
,”
J. Acoust. Soc. Am.
,
85
(
2
), pp.
588
598
.
6.
Kim
,
B. K.
, and
Ih
,
J. G.
,
1996
, “
On the Reconstruction of Vibro-Acoustic Field Over the Surface Enclosing an Interior Space Using the Boundary Element Method
,”
J. Acoust. Soc. Am.
,
100
(
5
), pp.
3030
3016
.
7.
Kim
,
Y. K.
, and
Kim
,
Y. H.
,
1999
, “
Holographic Reconstruction of Active Sources and Surface Admittance in an Enclosure
,”
J. Acoust. Soc. Am.
,
105
(
4
), pp.
2377
2383
.
8.
Kim
,
G. T.
, and
Lee
,
B. T.
,
1990
, “
3-D Sound Source Reconstruction and Field Reproduction Using the Helmholtz Integral Equation
,”
J. Sound Vib.
,
136
(
2
), pp.
245
261
.
9.
Bai
,
M. R.
,
1992
, “
Application of BEM (Boundary Element Method)-Based Acoustic Holography to Radiation Analysis of Sound Sources With Arbitrarily Shaped Geometries
,”
J. Acoust. Soc. Am.
,
92
(
1
), pp.
533
548
.
10.
Chappell
,
D. J.
, and
Harris
,
P. J.
,
2009
, “
A Burton-Miller Inverse Boundary Element Method for Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
126
(
1
), pp.
149
157
.
11.
Sarkissian
,
A.
,
Gaumond
,
C. F.
,
Williams
,
E. G.
, and
Houston
,
B. H.
,
1993
, “
Reconstruction of the Acoustic Field Over a Limited Surface Area on a Vibrating Cylinder
,”
J. Acoust. Soc. Am.
,
93
(
1
), pp.
48
54
.
12.
Valdivia
,
N. P.
,
Williams
,
E. G.
, and
Herdic
,
P. C.
,
2008
, “
Approximations of Inverse Boundary Element Methods With Partial Measurements of the Pressure Field
,”
J. Acoust. Soc. Am.
,
123
(
1
), pp.
109
120
.
13.
Wu
,
S. F.
, and
Zhao
,
X.
,
2002
, “
Combined Helmholtz Equation-Least Squares Method for Reconstructing Acoustic Radiation From Arbitrarily Shaped Objects
,”
J. Acoust. Soc. Am.
,
112
(
1
), pp.
179
188
.
14.
Wu
,
S. F.
,
2004
, “
Hybrid Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
115
(
1
), pp.
207
217
.
15.
Langrenne
,
C.
,
Melon
,
M.
, and
Garcia
,
A.
,
2007
, “
Boundary Element Method for the Acoustic Characterization of a Machine in Bounded Noisy Environment
,”
J. Acoust. Soc. Am.
,
121
(
5
), pp.
2750
2757
.
16.
Langrenne
,
C.
,
Melon
,
M.
, and
Garcia
,
A.
,
2009
, “
Measurement of Confined Acoustic Sources Using Near-Field Acoustic Holography
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
1250
1256
.
17.
Valdivia
,
N.
, and
Williams
,
E. G.
,
2004
, “
Implicit Methods of Solution to Integral Formulations in Boundary Element Method Based Nearfield Acoustic Holography
,”
J. Acoust. Soc. Am.
,
116
(
3
), pp.
1559
1572
.
18.
Zhang
,
Z.
,
Vlahopoulos
,
N.
,
Allen
,
T.
, and
Zhang
,
K. Y.
,
2001
, “
A Source Reconstruction Process Based on an Indirect Variational Boundary Element Formulation
,”
Eng. Anal. Boundary Elem.
,
25
(
2
), pp.
93
114
.
19.
Vlahopoulos
,
N.
, and
Raveerdra
,
S. T.
,
1998
, “
Formulation, Implementation and Validation of Multiple Connection and Free Edge Constraints in an Indirect Boundary Element Formulation
,”
J. Sound Vib.
,
210
(
1
), pp.
137
152
.
20.
Friedman
,
M. B.
, and
Shaw
,
R. P.
,
1962
, “
Diffraction of Pulses by Cylindrical Obstacles of Arbitrary Cross Section
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
40
46
.
21.
Mitzner
,
K. M.
,
1967
, “
Numerical Solution for Transient Scattering From a Hard Surface of Arbitrary Shape-Retarded Potential Technique
,”
J. Acoust. Soc. Am.
,
42
(
2
), pp.
391
397
.
22.
Ding
,
Y.
,
Forestier
,
A.
, and
Duong
,
T. H.
,
1989
, “
A Galerkin Scheme for the Time Domain Integral Equation of Acoustic Scattering From a Hard Surface
,”
J. Acoust. Soc. Am.
,
86
(
4
), pp.
1566
1572
.
23.
Bluck
,
M. J.
, and
Walker
,
S. P.
,
1996
, “
Analysis of Three-Dimensional Transient Acoustic Wave Propagation Using the Boundary Integral Equation Method
,”
Int. J. Numer. Methods Eng.
,
39
(
8
), pp.
1419
1431
.
24.
Chappell
,
D. J.
,
2011
, “
Convolution Quadrature Galerkin Boundary Element Method for the Wave Equation With Reduced Quadrature Weight Computation
,”
IMA J. Numer. Anal.
,
31
(
2
), pp.
640
666
.
25.
Rynne
,
B. P.
,
1985
, “
Stability and Convergence of Time Marching Methods in Scattering Problems
,”
IMA J. Appl. Math.
,
35
(
3
), pp.
297
310
.
26.
Ergin
,
A. A.
,
Shanker
,
B.
, and
Michielssen
,
E.
,
1999
, “
Analysis of Transient Wave Scattering From Rigid Bodies Using a Burton–Miller Approach
,”
J. Acoust. Soc. Am.
,
106
(
5
), pp.
2396
2404
.
27.
Chappell
,
D. J.
,
Harris
,
P. J.
,
Henwood
,
D.
, and
Chakrabarti
,
R.
,
2006
, “
A Stable Boundary Element Method for Modeling Transient Acoustic Radiation
,”
J. Acoust. Soc. Am.
,
120
(
1
), pp.
76
80
.
28.
Jang
,
H. W.
, and
Ih
,
J. G.
,
2012
, “
Stabilization of Time Domain Acoustic Boundary Element Method for the Interior Problem With Impedance Boundary Conditions
,”
J. Acoust. Soc. Am.
,
131
(
4
), pp.
2742
2752
.
29.
Jang
,
H. W.
, and
Ih
,
J. G.
,
2012
, “
Stabilization of Time Domain Acoustic Boundary Element Method for the Exterior Problem Avoiding the Nonuniqueness
,”
J. Acoust. Soc. Am.
,
133
(
3
), pp.
1237
1244
.
30.
Troclet
,
B.
,
Alestra
,
S.
,
Srithammavanh
,
V.
, and
Terrasse
,
I.
,
2011
, “
A Time Domain Inverse Method for Identification of Random Acoustic Sources at Launch Vehicle Lift-Off
,”
ASME J. Vib. Acoust.
,
133
(2), pp.
1
11
.
31.
Mansur
,
W. J.
,
1983
, “
A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method
,”
Ph.D. thesis
, Southampton University, Southampton, UK.
32.
Hald
,
J.
,
2001
, “
Time Domain Acoustical Holography and Its Applications
,”
J. Sound Vib.
,
35
(2), pp.
16
24
.
33.
Rochefoucauld
,
O. D. L.
,
Melon
,
M.
, and
Garcia
,
A.
,
2004
, “
Time Domain Holography: Forward Projection of Simulated and Measured Sound Pressure Fields
,”
J. Acoust. Soc. Am.
,
116
(
1
), pp.
142
153
.
34.
Blais
,
J.-F.
, and
Ross
,
A.
,
2009
, “
Forward Projection of Transient Sound Pressure Fields Radiated by Impacted Plates Using Numerical Laplace Transform
,”
J. Acoust. Soc. Am.
,
125
(
5
), pp.
3120
3128
.
35.
Deblauwe
,
F.
,
Leuridan
,
J.
,
Chauray
,
J. L.
, and
Béguet
,
B.
,
1999
, “
Acoustic Holography in Transient Conditions
,”
Sixth International Congress on Sound and Vibration
, Copenhagen, Denmark, pp.
899
906
.
36.
Grulier
,
V.
,
Paillasseur
,
S.
,
Thomas
,
J.-H.
, and
Pascal
,
J.-C.
,
2009
, “
Forward Propagation of Time Evolving Acoustic Pressure: Formulation and Investigation of the Impulse Response in Time-Wavenumber Domain
,”
J. Acoust. Soc. Am.
,
126
(
5
), pp.
2367
2378
.
37.
Thomas
,
J.-H.
,
Grulier
,
V.
,
Paillasseur
,
S.
,
Pascal
,
J.-C.
, and
Le Roux
,
J.-C.
,
2010
, “
Real-Time Nearfield Acoustical Holography for Continuously Visualizing Nonstationary Acoustic Fields
,”
J. Acoust. Soc. Am.
,
128
(
6
), pp.
3554
3567
.
38.
Wu
,
S. F.
,
Lu
,
H.
, and
Bajwa
,
M. S.
,
2004
, “
Reconstruction of Transient Acoustic Radiation From a Sphere
,”
J. Acoust. Soc. Am.
,
117
(
4
), pp.
2065
2077
.
39.
Wu
,
S. F.
,
2014
, “
Reconstructing Transient Acoustic Radiation From an Arbitrary Object With a Uniform Surface Velocity Distribution
,”
J. Acoust. Soc. Am.
,
136
(
2
), pp.
514
524
.
40.
Zhang
,
X. Z.
,
Bi
,
C. X.
,
Zhang
,
Y. B.
, and
Xu
,
L.
,
2011
, “
Transient Nearfield Acoustic Holography Based on an Interpolated Time-Domain Equivalent Source Method
,”
J. Acoust. Soc. Am.
,
130
(
3
), pp.
1430
1440
.
41.
Bi
,
C. X.
,
Geng
,
L.
, and
Zhang
,
X. Z.
,
2013
, “
Cubic Spline Interpolation-Based Time-Domain Equivalent Source Method for Modeling Transient Acoustic Radiation
,”
J. Sound Vib.
,
332
(
22
), pp.
5939
5952
.
42.
Rizos
,
D. C.
, and
Zhou
,
S.
,
2006
, “
An Advanced Direct Time Domain BEM for 3-D Wave Propagation in Acoustic Media
,”
J. Sound Vib.
,
293
(
1
), pp.
196
212
.
43.
Duong
,
T. H.
,
Ludwig
,
B.
, and
Terrasse
,
I.
,
2003
, “
A Galerkin BEM for Transient Acoustic Scattering by an Absorbing Obstacle
,”
Int. J. Numer. Methods Eng.
,
57
(
13
), pp.
1845
1882
.
44.
Williams
,
E. G.
,
Houston
,
B. H.
, and
Herdic
,
P. C.
,
2003
, “
Fast Fourier Transform and Singular Value Decomposition Formulations for Patch Nearfield Acoustical Holography
,”
J. Acoust. Soc. Am.
,
114
(
3
), pp.
1322
1333
.
45.
Nelson
,
P. A.
, and
Yoon
,
S. H.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods—Part I: Conditioning of the Inverse Problem
,”
J. Sound Vib.
,
233
(
4
), pp.
643
668
.
46.
Nelson
,
P. A.
, and
Yoon
,
S. H.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods—Part II: Experimental Investigation of Methods for Choosing Regularization Parameters
,”
J. Sound Vib.
,
233
(
4
), pp.
669
705
.
47.
Wu
,
S. F.
,
1993
, “
Transient Sound Radiation From Impulsively Accelerated Bodies
,”
J. Acoust. Soc. Am.
,
94
(
1
), pp.
542
553
.
You do not currently have access to this content.