Abstract

In this paper, a simple and efficient method is developed to quench the steady-state vibration of a harmonically excited, damped and symmetric laminated composite rectangular plate. This is achieved by enforcing points of zero displacement, or nodes, at some specified locations on the laminated composite plate using properly tuned damped oscillators. Using the assumed-modes method, the governing equations of the laminated composite plate carrying the damped oscillators are first formulated. A set of constraint equations is established by enforcing nodes at user-specified locations on the plate. Two attachment scenarios are considered: when the attachment and node locations coincide and when they are distinct. Numerical experiments show that for both cases, the damped oscillator parameters can be readily determined and the desired node locations can be successfully imposed. More importantly, enforcing nodes can suppress vibration in the vicinity of the node locations, thereby keeping that region of the laminated composite plate nearly stationary.

References

1.
Narita
,
Y.
,
2000
, “
Combinations for the Free-Vibration Behaviors of Anisotropic Rectangular Plates Under General Edge Conditions
,”
ASME J. Appl. Mech.
,
67
(
3
), pp.
568
573
.
2.
Aydogdu
,
M.
,
2006
, “
Comparison of Various Shear Deformation Theories for Bending, Buckling, and Vibration of Rectangular Symmetric Cross-Ply Plate With Simply Supported Edges
,”
J. Compos. Mater.
,
40
(
23
), pp.
2143
2155
.
3.
Xing
,
Y. F.
, and
Liu
,
B.
,
2009
, “
New Exact Solutions for Free Vibrations of Thin Orthotropic Rectangular Plates
,”
Compos. Struct.
,
89
(
4
), pp.
567
574
.
4.
Shooshtari
,
A.
, and
Razavi
,
S.
,
2010
, “
A Closed Form Solution for Linear and Nonlinear Free Vibrations of Composite and Fiber Metal Laminated Rectangular Plates
,”
Compos. Struct.
,
92
(
11
), pp.
2663
2675
.
5.
Malekzadeh
,
K.
,
Tafazoli
,
S.
, and
Khalili
,
S. M. R.
,
2010
, “
Free Vibrations of Thick Rectangular Composite Plate With Uniformly Distributed Attached Mass Including Stiffness Effect
,”
J. Compos. Mater.
,
44
(
24
), pp.
2897
2918
.
6.
Alsaif
,
K. A.
, and
Foda
,
M. A.
,
2011
, “
Control of Steady-State Vibrations of Rectangular Plates
,”
Int. J. Struct. Stab. Dyn.
,
11
(
3
), pp.
535
562
.
7.
Zhou
,
D.
, and
Ji
,
T.
,
2012
, “
Free Vibration of Rectangular Plates With Attached Discrete Sprung Masses
,”
Shock Vib.
,
19
(
1
), pp.
101
118
.
8.
Bai
,
E.
, and
Chen
,
A.
,
2012
, “
A Symplectic Eigenfunction Expansion Approach for Free Vibration Solutions of Rectangular Kirchhoff Plates
,”
J. Vib. Control
,
19
(
8
), pp.
1208
1215
.
9.
Thai
,
C. H.
,
Tran
,
L. V.
,
Tran
,
D. T.
,
Nguyen-Thoi
,
T.
, and
Nguyen-Xuan
,
H.
,
2012
, “
Analysis of Laminated Composite Plates Using Higher-Order Shear Deformation Plate Theory and Node-Based Smoothed Discrete Shear Gap Method
,”
Appl. Math. Model.
,
36
(
11
), pp.
5657
5677
.
10.
Metin
,
A.
, and
Seckin
,
F.
,
2013
, “
Vibration Analysis of Symmetric Laminated Composite Plates With Attached Mass
,”
Mech. Adv. Mater. Struct.
,
23
(
2
), pp.
136
145
.
11.
Zhang
,
W.
,
Zhao
,
M. H.
, and
Guo
,
X. Y.
,
2013
, “
Nonlinear Responses of a Symmetric Cross-Ply Composite Laminated Cantilever Rectangular Plate Under In-Plane and Moment Excitations
,”
Compos. Struct.
,
100
, pp.
554
565
.
12.
Guo
,
X. Y.
, and
Zhang
,
W.
,
2016
, “
Nonlinear Vibrations of a Reinforced Composite Plate With Carbon Nanotubes
,”
Compos. Struct.
,
135
, pp.
96
108
.
13.
Zhang
,
Y. F.
,
Zhang
,
W.
, and
Yao
,
Z. G.
,
2018
, “
Analysis on Nonlinear Vibrations Near Internal Resonances of a Composite Laminated Piezoelectric Rectangular Plate
,”
Eng. Struct.
,
173
, pp.
89
106
.
14.
Zhang
,
W.
,
Yang
,
J. H.
,
Zhang
,
Y. F.
, and
Yang
,
S. W.
,
2019
, “
Nonlinear Transverse Vibrations of Angle-Ply Laminated Composite Piezoelectric Cantilever Plate With Four-Modes Subjected to In-Plane and Out-of-Plane Excitations
,”
Eng. Struct.
,
198
, p.
109501
.
15.
Mao
,
J. J.
, and
Zhang
,
W.
,
2018
, “
Linear and Nonlinear Free and Forced Vibrations of Graphene Reinforced Piezoelectric Composite Plate Under External Voltage Excitation
,”
Compos. Struct.
,
203
, pp.
551
565
.
16.
Mao
,
J. J.
,
Zhang
,
W.
, and
Lu
,
H. M.
,
2020
, “
Static and Dynamic Analyses of Graphene-Reinforced Aluminium-Based Composite Plate in Thermal Environment
,”
Aerosp. Sci. Technol.
,
107
, p.
106354
.
17.
Song
,
Z. G.
, and
Li
,
F. M.
,
2012
, “
Active Aeroelastic Flutter Analysis and Vibration Control of Supersonic Composite Laminated Plate
,”
Compos. Struct.
,
94
(
2
), pp.
702
713
.
18.
Li
,
J.
,
Ma
,
Z.
,
Wang
,
Z.
, and
Narita
,
Y.
,
2014
, “
Random Vibration Control of Laminated Composite Plates With Piezoelectric Fiber Reinforced Composites
,”
Acta Mech. Sol. Sin.
,
29
(
3
), pp.
316
327
.
19.
Zhang
,
Y. F.
,
Zhou
,
H. M.
, and
Zhou
,
Y. H.
,
2015
, “
Vibration Suppression of Cantilever Laminated Composite Plate With Nonlinear Giant Magnetostrictive Material Layers
,”
Acta Mech. Sol. Sin.
,
28
(
1
), pp.
50
61
.
20.
Ferrari
,
G.
, and
Amabili
,
M.
,
2015
, “
Active Vibration Control of a Sandwich Plate by Non-Collocated Positive Position Feedback
,”
J. Sound Vib.
,
342
, pp.
44
56
.
21.
Cao
,
X.
,
Tanner
,
G.
, and
Chronopoulos
,
D.
,
2020
, “
Active Vibration Control of Thin Constrained Composite Damping Plates With Double Piezoelectric Layers
,”
Wave Motion
,
92
, p.
102423
.
22.
Lu
,
S. F.
,
Jiang
,
Y.
,
Zhang
,
W.
, and
Song
,
X. J.
,
2020
, “
Vibration Suppression of Cantilevered Piezoelectric Laminated Composite Rectangular Plate Subjected to Aerodynamic Force in Hygrothermal Environment
,”
Eur. J. Mech. A Solids
,
83
, p.
104002
.
23.
Snowdon
,
J. C.
,
1975
, “
Vibration of Simply Supported Rectangular and Square Plates to Which Lumped Masses and Dynamic Vibration Absorbers Are Attached
,”
J. Acoust. Soc. Am.
,
57
(
3
), pp.
646
654
.
24.
Klasztorny
,
M.
,
1995
, “
Reduction of Steady-State Forced Vibrations of Structures With Dynamic Absorbers
,”
Earthquake Eng. Struct. Dyn.
,
24
(
8
), pp.
1155
1172
.
25.
Aida
,
T.
,
Kawazoe
,
K.
, and
Toda
,
S.
,
1995
, “
Vibration Control of Plates by Plate-Type Dynamic Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
117
(
3
), pp.
332
338
.
26.
Jacquots
,
R. G.
,
2001
, “
Suppression of Random Vibration in Plates Using Vibration Absorbers
,”
J. Sound Vib.
,
248
(
4
), pp.
585
596
.
27.
Chiba
,
M.
, and
Sugimoto
,
T.
,
2003
, “
Vibration Characteristics of a Cantilever Plate With Attached Spring-Mass System
,”
J. Sound Vib.
,
260
(
2
), pp.
237
263
.
28.
Pranoto
,
T.
,
Nagaya
,
K.
, and
Hosoda
,
A.
,
2004
, “
Vibration Suppression of Plate Using Linear MR Fluid Passive Damper
,”
J. Sound Vib.
,
276
(
3–5
), pp.
919
932
.
29.
Wu
,
J.
,
2006
, “
Free Vibration Characteristics of a Rectangular Plate Carrying Multiple Three-Degree-of-Freedom Spring–Mass Systems Using Equivalent Mass Method
,”
Int. J. Solids Struct.
,
43
(
3–4
), pp.
727
746
.
30.
Moradi
,
H.
,
Sadighi
,
M.
, and
Bakhtiari-Nejad
,
F.
,
2011
, “
Optimum Design of a Tunable Vibration Absorber With Variable Position to Suppress Vibration of a Cantilever Plate
,”
Int. J. Acoust. Vib.
,
16
(
2
), pp.
55
63
.
31.
Hoseinzadeh
,
M.
, and
Rezaeepazhand
,
J.
,
2014
, “
Vibration Suppression of Composite Plates Using Smart Electro-Rheological Dampers
,”
Int. J. Mech. Sci.
,
84
, pp.
31
40
.
32.
Zhang
,
Y. W.
,
Zhang
,
H.
,
Hou
,
S.
,
Xu
,
K. F.
, and
Chen
,
L. Q.
,
2016
, “
Vibration Suppression of Composite Laminated Plate With Nonlinear Energy Sink
,”
Acta Astronaut.
,
123
, pp.
109
115
.
33.
Liu
,
X.
,
Kassem
,
H. I.
, and
Banerjee
,
J. R.
,
2016
, “
An Exact Spectral Dynamic Stiffness Theory for Composite Plate-Like Structures With Arbitrary Non-uniform Elastic Supports, Mass Attachments and Coupling Constraints
,”
Compos. Struct.
,
142
, pp.
140
154
.
34.
Shen
,
Y.
,
Zhou
,
X.
, and
Cha
,
P. D.
,
2018
, “
An Efficient Method to Quench Excess Vibration for a Harmonically Excited Damped Plate
,”
Int. J. Mech. Sci.
,
141
, pp.
372
385
.
35.
Zhang
,
Y. W.
,
Lu
,
Y. N.
,
Zhang
,
W.
,
Teng
,
Y. Y.
,
Yang
,
H. X.
,
Yang
,
T. Z.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Energy Sink With Inerter
,”
Mech. Syst. Signal Process.
,
125
, pp.
52
64
.
36.
Zhang
,
Y. W.
,
Hou
,
S.
,
Zhang
,
Z.
,
Zang
,
J.
,
Ni
,
Z. Y.
,
Teng
,
Y. Y.
, and
Chen
,
L. Q.
,
2020
, “
Nonlinear Vibration Absorption of Laminated Composite Beams in Complex Environment
,”
Nonlinear Dyn.
,
99
(
2
), pp.
1
18
.
37.
Gibson
,
R. F.
,
2016
,
Principles of Composite Materials Mechanics
, 4th ed.,
CRC Press, Taylor & Francis Group
,
New York
.
38.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
Boston, MA
.
You do not currently have access to this content.