Abstract

In this paper, the forced coupled flexural–torsional vibration of a piezoelectrically actuated double-cantilever structure is investigated. The double-cantilever structure is composed of two uniform and identical Euler–Bernoulli cantilever beams connected by a rigid tip connection at their free ends. There is also a piezoelectric layer attached on the top surface of each cantilever beam. The characteristic equation for the coupled flexural–torsional vibrations of the structure is derived and solved to determine the natural frequencies. The time response to the forced vibrations of the structure is studied using the Galerkin approximation method. The effects of dimensional parameters, including the length of the cantilever beams and the length of the tip connection, and the piezoelectric input voltage on the coupled flexural–torsional natural frequencies and amplitude of vibrations of the structure are investigated analytically and experimentally. The results show that the coupled flexural–torsional fundamental frequency of the piezoelectrically actuated double-cantilever structure decreases as either the length of the cantilever beams or the tip connection is increased. Moreover, the amplitude of the coupled flexural–torsional vibrations of the structure is proportional to the piezoelectric input voltage; however, the slope of the curves depends on dimensional parameters. For a given voltage, the effect of either of the aforementioned dimensional parameters on the amplitude of vibrations depends on the other dimensional parameter such that there is a turning point in all the curves, whose location depends on the configuration of the structure.

References

1.
Gritsenko
,
D.
,
Xu
,
J.
, and
Paoli
,
R.
,
2020
, “
Transverse Vibrations of Cantilever Beams: Analytical Solutions With General Steady-State Forcing
,”
Appl. Eng. Sci.
,
3
.
2.
Wang
,
B.
,
Wang
,
Z.
, and
Zuo
,
X.
,
2017
, “
Frequency Equation of Flexural Vibrating Cantilever Beam Considering the [Q6]Rotary Inertial Moment of an Attached Mass
,”
Math. Probl. Eng.
,
2017
.
3.
Gürgöze
,
M.
,
1996
, “
On the Eigenfrequencies of a Cantilever Beam With Attached Tip Mass and a Spring–Mass System
,”
J. Sound Vib.
,
190
(
2
), pp.
149
162
.
4.
McCarty
,
R.
,
Carmichael
,
B.
, and
Mahmoodi
,
S. N.
,
2014
, “
Dynamic Analysis of Tapping Atomic Force Microscopy Considering Various Boundary Value Problems
,”
Sens. Actuators A
,
216
, pp.
69
77
.
5.
Hong
,
J.
,
Dodson
,
J.
,
Laflamme
,
S.
, and
Downey
,
A.
,
2019
, “
Transverse Vibration of Clamped–Pinned–Free Beam With Mass at Free End
,”
Appl. Sci.
,
9
(
15
), p.
2996
.
6.
Ece
,
M. C.
,
Aydogdu
,
M.
, and
Taskin
,
V.
,
2007
, “
Vibration of a Variable Cross-Section Beam
,”
Mech. Res. Commun.
,
34
(
1
), pp.
78
84
.
7.
Tan
,
G.
,
Wang
,
W.
, and
Jiao
,
Y.
,
2016
, “
Flexural Free Vibrations of Multistep Nonuniform Beams
,”
Math. Probl. Eng.
,
2016
.
8.
Wang
,
Q.
, and
Quek
,
S. T.
,
2000
, “
Flexural Vibration Analysis of Sandwich Beam Coupled With Piezoelectric Actuator
,”
Smart Mater. Struct.
,
9
(
1
), pp.
103
109
.
9.
Łabędzki
,
P.
,
Pawlikowski
,
R.
, and
Radowicz
,
A.
,
2018
, “
Transverse Vibration of a Cantilever Beam Under Base Excitation Using Fractional Rheological Model
,”
AIP Conf. Proc.
,
2029
(
1
), p.
020034
.
10.
Pai
,
P. F.
, and
Nayfeh
,
A. H.
,
1990
, “
Non-linear Non-planar Oscillations of a Cantilever Beam Under Lateral Base Excitations
,”
Int. J. Non-Linear Mech.
,
25
(
5
), pp.
455
474
.
11.
Orhan
,
S.
,
2007
, “
Analysis of Free and Forced Vibration of a Cracked Cantilever Beam
,”
NDT&E Int.
,
40
(
6
), pp.
443
450
.
12.
Léonard
,
F.
,
Lanteigne
,
J.
,
Lalonde
,
S.
, and
Turcotte
,
Y.
,
2001
, “
Free-Vibration Behaviour of a Cracked Cantilever Beam and Crack Detection
,”
Mech. Syst. Signal Process.
,
15
(
3
), pp.
529
548
.
13.
Kapuria
,
S.
,
Bhattacharyya
,
M.
, and
Kumar
,
A. N.
,
2008
, “
Bending and Free Vibration Response of Layered Functionally Graded Beams: A Theoretical Model and Its Experimental Validation
,”
Compos. Struct.
,
82
(
3
), pp.
390
402
.
14.
Huang
,
Y.
, and
Li
,
X.
,
2010
, “
A New Approach for Free Vibration of Axially Functionally Graded Beams With Non-uniform Cross-Section
,”
J. Sound Vib.
,
329
(
11
), pp.
2291
2303
.
15.
Green
,
C. P.
, and
Sader
,
J. E.
,
2002
, “
Torsional Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
92
(
10
), pp.
6262
6274
.
16.
Gao
,
S.
,
Zhang
,
G.
, and
Jin
,
L.
,
2017
, “
Study on Characteristics of the Piezoelectric Energy-Harvesting From the Torsional Vibration of Thin-Walled Cantilever Beams
,”
Microsyst. Technol.
,
23
(
12
), pp.
5455
5465
.
17.
Rao
,
C. K.
, and
Mirza
,
S.
,
1988
, “
Free Torsional Vibrations of Tapered Cantilever I-Beams
,”
J. Sound Vib.
,
124
(
3
), pp.
489
496
.
18.
Banerjee
,
J. R.
,
1999
, “
Explicit Frequency Equation and Mode Shapes of a Cantilever Beam Coupled in Bending and Torsion
,”
J. Sound Vib.
,
224
(
2
), pp.
267
281
.
19.
Eslimy-Isfahany
,
S. H. R.
, and
Banerjee
,
J. R.
,
2000
, “
Use of Generalized Mass in the Interpretation of Dynamic Response of Bending–Torsion Coupled Beams
,”
J. Sound Vib.
,
238
(
2
), pp.
295
308
.
20.
Hashemi
,
S. M.
, and
Richard
,
M. J.
,
2000
, “
Free Vibrational Analysis of Axially Loaded Bending–Torsion Coupled Beams: A Dynamic Finite Element
,”
Comput. Struct.
,
77
(
6
), pp.
711
724
.
21.
Aksongur
,
A. K.
,
Eken
,
S.
, and
Kaya
,
M. O.
,
2019
, “
Coupled Bending–Torsional Dynamic Behavior of a Cantilever Beam Carrying Multiple Point Masses
,”
Int. J. Mech. Eng. Rob. Res.
,
8
(
3
), pp.
477
482
.
22.
Adam
,
C.
,
1999
, “
Forced Vibrations of Elastic Bending–Torsion Coupled Beams
,”
J. Sound Vib.
,
221
(
2
), pp.
273
287
.
23.
Barry
,
O.
,
Oguamanam
,
D. C. D.
, and
Zu
,
J. W.
,
2014
, “
On the Dynamic Analysis of a Beam Carrying Multiple Mass–Spring–Mass–Damper System
,”
Shock Vib.
,
2014
(
485630
).
24.
Oguamanam
,
D. C. D.
,
2003
, “
Free Vibration of Beams With Finite Mass Rigid Tip Load and Flexural–Torsional Coupling
,”
Int. J. Mech. Sci.
,
45
(
6
), pp.
963
979
.
25.
Bhadbhade
,
V.
,
Jalili
,
N.
, and
Nima Mahmoodi
,
S.
,
2008
, “
A Novel Piezoelectrically Actuated Flexural/Torsional Vibrating Beam Gyroscope
,”
J. Sound Vib.
,
311
(
3
), pp.
1305
1324
.
26.
Burlon
,
A.
,
Failla
,
G.
, and
Arena
,
F.
,
2017
, “
Coupled Bending and Torsional Free Vibrations of Beams With In-span Supports and Attached Masses
,”
Eur. J. Mech.—A/Solids
,
66
, pp.
387
411
.
27.
Lee
,
B. K.
,
Lee
,
J. K.
,
Lee
,
T. E.
, and
Ahn
,
D. S.
,
2000
, “
Coupled Flexural–Torsional Vibrations of Thin-Walled Beams With Monosymmetric Cross-section
,”
Proceedings of the Conference on Computing in Civil and Building Engineering
, pp.
106
113
.
28.
Bercin
,
A. N.
, and
Tanaka
,
M.
,
1997
, “
Coupled Flexural–Torsional Vibrations of Timoshenko Beams
,”
J. Sound Vib.
,
207
(
1
), pp.
47
59
.
29.
Burlon
,
A.
,
Failla
,
G.
, and
Arena
,
F.
,
2018
, “
Coupled Bending–Torsional Frequency Response of Beams With Attachments: Exact Solutions Including Warping Effects
,”
Acta Mech.
,
229
(
6
), pp.
2445
2475
.
30.
Anderson
,
G. L.
,
1978
, “
Natural Frequencies of Two Cantilevers Joined by a Rigid Connector at Their Free Ends
,”
J. Sound Vib.
,
57
(
3
), pp.
403
412
.
31.
Lee
,
K. T.
,
2009
, “
Vibration of Two Cantilever Beams Clamped at One End and Connected by a Rigid Body at the Other
,”
J. Mech. Sci. Technol.
,
23
(
2
), pp.
358
371
.
32.
Rezaei
,
E.
, and
Turner
,
J. A.
,
2014
, “
Free Vibrations of U-Shaped Atomic Force Microscope Probes
,”
J. Appl. Phys.
,
115
(
17
), p.
174302
.
33.
Nima Mahmoodi
,
S.
, and
Jalili
,
N.
,
2007
, “
Non-linear Vibrations and Frequency Response Analysis of Piezoelectrically Driven Microcantilevers
,”
Int. J. Non-Linear Mech.
,
42
(
4
), pp.
577
587
.
34.
Zargarani
,
A.
, and
Mahmoodi
,
S. N.
,
2022
, “
Flexural–Torsional Free Vibration Analysis of a Double-Cantilever Structure
,”
ASME J. Vib. Acoust.
,
144
(
3
), p. 031001.
35.
Mahmoodi
,
S. N.
, and
Jalili
,
N.
,
2008
, “
Coupled Flexural–Torsional Nonlinear Vibrations of Piezoelectrically Actuated Microcantilevers With Application to Friction Force Microscopy
,”
ASME J. Vib. Acoust.
,
130
(
6
), p.
061003
.
36.
Augustyn
,
E.
, and
Kozień
,
M.
,
2016
, “
Possibility of Existence of Torsional Vibrations of Beams in Low Frequency Range
,”
Tech. Trans.
,
2016
(
3
), pp.
3
11
.
37.
Gökdağ
,
H.
, and
Kopmaz
,
O.
,
2005
, “
Coupled Bending and Torsional Vibration of a Beam with In-span and Tip Attachments
,”
J. Sound Vib.
,
287
(
3
), pp.
591
610
.
38.
Erturk
,
A.
, and
Inman
,
D.
,
2011
,
Piezoelectric Energy Harvesting
, 1st ed.,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
, pp.
353
366
.
You do not currently have access to this content.