Abstract

The nonlinear response of a series-type pendulum tuned mass damper-tuned liquid damper (TMD-TLD) system is investigated in this study. The TLD is mounted on the pendulum TMD in series to remove the need for costly viscous damping elements. Since the response of the TMD is greater than that of the primary structure, the TLD experiences a significant base motion, leading to a highly nonlinear response that is difficult to model. The nonlinear pendulum TMD equation of motion is modeled without linearizing assumptions. The TLD is represented by an incompressible smoothed particle hydrodynamics (SPH) model that can capture large sloshing responses. The nonlinear model results are compared to shake table testing for a TMD-TLD system and a linear equivalent mechanical model. Four system configurations are considered. The nonlinear model shows good agreement with the experimental data for the TMD displacement and TLD wave heights in both time and frequency domains. The nonlinear model shows improved agreement compared to the linear model for all cases studied, especially for the TLD wave heights. The impact of simplifying the pendulum TMD equation of motion by the small-angle assumption is investigated for two cases. The results indicate that the simplified pendulum equation does not properly capture the frequency of the TMD in the TMD-TLD system and results in a reduction in calculated TLD wave heights compared to the fully nonlinear equation. It is therefore critical to consider the fully nonlinear pendulum TMD response to capture the TMD-TLD behavior.

References

1.
Reed
,
D.
,
Yu
,
J.
,
Yeh
,
H.
, and
Gardarsson
,
S.
,
1998
, “
Investigation of Tuned Liquid Dampers Under Large Amplitude Excitation
,”
J. Eng. Mech.
,
124
(
4
), pp.
405
413
.
2.
Kaneko
,
S.
, and
Ishikawa
,
M.
,
1999
, “
Modeling of Tuned Liquid Damper With Submerged Nets
,”
ASME J. Pressure Vessel Technol.
,
121
(
3
), pp.
334
344
.
3.
Tait
,
M. J.
,
Isyumov
,
N.
, and
El Damatty
,
A. A.
,
2008
, “
Performance of Tuned Liquid Dampers
,”
J. Eng. Mech.
,
134
(
5
), pp.
417
427
.
4.
Love
,
J. S.
, and
Haskett
,
T. C.
,
2018
, “
Nonlinear Modelling of Tuned Sloshing Dampers With Large Internal Obstructions: Damping and Frequency Effects
,”
J. Fluids Struct.
,
79
, pp.
1
13
.
5.
Warburton
,
G. B.
,
1982
, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthq. Eng. Struct. Dyn.
,
10
, pp.
381
401
.
6.
Gerges
,
R. R.
, and
Vickery
,
B. J.
,
2005
, “
Optimum Design of Pendulum-Type Tuned Mass Dampers
,”
Struct. Des. Tall Spec. Build.
,
14
(
4
), pp.
353
368
.
7.
Asami
,
T.
,
2017
, “
Optimal Design of Double-Mass Dynamic Vibration Absorbers Arranged in Series or in Parallel
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011015
.
8.
Zuo
,
L.
,
2009
, “
Effective and Robust Vibration Control Using Series Multiple Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031003
.
9.
Love
,
J. S.
, and
Lee
,
C. S.
,
2019
, “
Nonlinear Series-Type Tuned Mass Damper-Tuned Sloshing Damper for Improved Structural Control
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021006
.
10.
Cao
,
Q. H.
,
2021
, “
Vibration Control of Structures by an Upgraded Tuned Liquid Column Damper
,”
J. Eng. Mech.
,
147
(
9
), p.
04021052
.
11.
Love
,
J. S.
,
McNamara
,
K. P.
,
Tait
,
M. J.
, and
Haskett
,
T. C.
,
2019
, “
Series-Type Pendulum Tuned Mass Damper-Tuned Sloshing Damper
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011003
.
12.
Roffel
,
A. J.
,
Narasimhan
,
S.
, and
Haskett
,
T.
,
2013
, “
Performance of Pendulum Tuned Mass Dampers in Reducing the Responses of Flexible Structures
,”
J. Struct. Eng.
,
139
(
12
), p.
04013019
.
13.
Xu
,
K.
,
Hua
,
X.
,
Lacarbonara
,
W.
,
Huang
,
Z.
, and
Chen
,
Z.
,
2021
, “
Exploration of the Nonlinear Effect of Pendulum Tuned Mass Dampers on Vibration Control
,”
J. Eng. Mech.
,
147
(
8
), p.
04021047
.
14.
Soltani
,
P.
, and
Deraemaeker
,
A.
,
2021
, “
Pendulum Tuned Mass Dampers and Tuned Mass Dampers: Analogy and Optimum Parameters for Various Combinations of Response and Excitation Parameters
,”
J. Vib. Control
.
15.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
Cambridge University Press
,
New York
.
16.
Faltinsen
,
O. M.
,
Rognebakke
,
O. F.
,
Lukovsky
,
I. A.
, and
Timokha
,
A. N.
,
2000
, “
Multidimensional Modal Analysis of Nonlinear Sloshing in a Rectangular Tank With Finite Water Depth
,”
J. Fluid Mech.
,
407
, pp.
201
234
.
17.
Love
,
J. S.
, and
Tait
,
M. J.
,
2010
, “
Nonlinear Simulation of a Tuned Liquid Damper With Damping Screens Using a Modal Expansion Technique
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1058
1077
.
18.
Love
,
J. S.
, and
Tait
,
M. J.
,
2011
, “
Non-linear Multimodal Model for Tuned Liquid Dampers of Arbitrary Tank Geometry
,”
Int. J. Non Linear Mech.
,
46
(
8
), pp.
1065
1075
.
19.
Love
,
J. S.
, and
Tait
,
M. J.
,
2015
, “
The Response of Structures Equipped With Tuned Liquid Dampers of Complex Geometry
,”
J. Vib. Control
,
21
(
6
), pp.
1171
1187
.
20.
Tait
,
M. J.
,
El Damatty
,
A. A.
,
Isyumov
,
N.
, and
Siddique
,
M. R.
,
2005
, “
Numerical Flow Models to Simulate Tuned Liquid Dampers (TLD) With Slat Screens
,”
J. Fluids Struct.
,
20
(
8
), pp.
1007
1023
.
21.
Violeau
,
D.
, and
Rogers
,
B. D.
,
2016
, “
Smoothed Particle Hydrodynamics (SPH) for Free-Surface Flows: Past, Present and Future
,”
J. Hydraul. Res.
,
54
(
1
), pp.
1
26
.
22.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.
23.
Vacondio
,
R.
,
Altomare
,
C.
,
De Leffe
,
M.
,
Hu
,
X.
,
Le Touze
,
D.
,
Lind
,
S.
,
Marongiu
,
J.
,
Marrone
,
S.
,
Rogers
,
B. D.
, and
Souto-Iglesias
,
A.
,
2021
, “
Grand Challenges for Smoothed Particle Hydrodynamics Numerical Schemes
,”
Comput. Part. Mech.
,
8
(
3
), pp.
575
588
.
24.
Marsh
,
A.
,
Prakash
,
M.
,
Semercigil
,
E.
, and
Turan
,
O. F.
,
2011
, “
A Study of Sloshing Absorber Geometry for Structural Control With SPH
,”
J. Fluids Struct.
,
27
(
8
), pp.
1165
1181
.
25.
Green
,
M. D.
, and
Peiro
,
J.
,
2018
, “
Long Duration SPH Simulations of Sloshing in Tanks With a Low Fill Ratio and High Stretching
,”
Comput. Fluids
,
174
, pp.
179
199
.
26.
Kashani
,
A. H.
,
Halabian
,
A. M.
, and
Asghari
,
K.
,
2018
, “
A Numerical Study of Tuned Liquid Damper Based on Incompressible SPH Method Combined With TMD Analogy
,”
J. Fluids Struct.
,
82
, pp.
394
411
.
27.
McNamara
,
K. P.
,
Awad
,
B. N.
,
Tait
,
M. J.
, and
Love
,
J. S.
,
2021
, “
Incompressible Smoothed Particle Hydrodynamics Model of a Rectangular Tuned Liquid Damper Containing Screens
,”
J. Fluids Struct.
,
103
, p.
103295
.
28.
McNamara
,
K. P.
, and
Tait
,
M. J.
,
2022
, “
Modelling the Response of Structure-Tuned Liquid Damper Systems Under Large Amplitude Excitation Using SPH
,”
ASME J. Vib. Acoust.
,
144
(
1
), p.
011008
.
29.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
, pp.
389
396
.
30.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.
31.
Cummins
,
S. J.
, and
Rudman
,
M.
,
1999
, “
An SPH Projection Method
,”
J. Comput. Phys.
,
152
(
2
), pp.
584
607
.
32.
Yeylaghi
,
S.
,
Moa
,
B.
,
Oshkai
,
P.
,
Buckham
,
B.
, and
Crawford
,
C.
,
2016
, “
ISPH Modelling of an Oscillating Wave Surge Converter Using an OpenMP-Based Parallel Approach
,”
J. Ocean Eng. Mar. Energy
,
2
, pp.
301
312
.
33.
Jiang
,
H.
,
You
,
Y.
,
Hu
,
Z.
,
Zheng
,
X.
, and
Ma
,
A.
,
2019
, “
Comparative Study on Violent Sloshing With Water Jet Flows by Using the ISPH Method
,”
Water (Switzerland)
,
11
(
12
), p.
2590
.
34.
Daly
,
E.
,
Grimaldi
,
S.
, and
Bui
,
H. H.
,
2016
, “
Explicit Incompressible SPH Algorithm for Free-Surface Flow Modelling: A Comparison With Weakly Compressible Schemes
,”
Adv. Water Resour.
,
97
, pp.
156
167
.
35.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2012
, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
231
(
21
), pp.
7057
7075
.
36.
Wendel
,
K.
,
1956
,
Hydrodynamic Masses and Hydrodynamic Moments of Inertia
,
Navy Department
,
Washington, DC
.
37.
Morison
,
J. R.
,
O'Brien
,
M. P.
,
Johnson
,
J. W.
, and
Shaaf
,
S. A.
,
1950
, “
The Forces Exerted by Surface Waves on Piles
,”
AIME Pet. Trans.
,
189
, pp.
149
157
.
38.
Tait
,
M. J.
,
2008
, “
Modelling and Preliminary Design of a Structure-TLD System
,”
Eng. Struct.
,
30
(
10
), pp.
2644
2655
.
39.
Faltinsen
,
O. M.
,
Rognebakke
,
O. F.
, and
Timokha
,
A. N.
,
2003
, “
Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin
,”
J. Fluid Mech.
,
487
, pp.
1
42
.
40.
Faltinsen
,
O. M.
,
Rognebakke
,
O. F.
, and
Timokha
,
A. N.
,
2006
, “
Resonant Three-Dimensional Nonlinear Sloshing in a Square-Base Basin. Part 3. Base Ratio Perturbations
,”
J. Fluid Mech.
,
551
, pp.
93
116
.
You do not currently have access to this content.