Abstract

A new moving Kirchhoff–Love plate element is developed in this work to accurately and efficiently calculate the dynamic response of vehicle–pavement interaction. Since the vehicle can only affect a small region nearby, the wide pavement is reduced to a small reduced plate area around the vehicle. The vehicle loads moving along an arbitrary trajectory is considered, and the arbitrary Lagrangian–Eulerian (ALE) method is used here for coordinate conversion. The reduced plate area is spatially discretized using the current moving plate element (MPE), where its governing equations are derived using Lagrange’s equations. The moving plate element is validated by different plate subjected to moving load cases. Then a vehicle–pavement interaction case with constant and variable speed is analyzed here. The calculation results from the moving plate element are in good agreement with those from the modal superposition method (MSM), and the calculation time with the moving plate element is only one-third of that using the MSM. The moving plate element is accurate and more efficient than the MSM in calculating the dynamic response of the vehicle–pavement interaction.

References

1.
Grakovski
,
A.
, and
Pilipovecs
,
A.
,
2017
, “
Dynamics of Interaction Between the Road Surface and Vehicle’s Wheel in Fibre-Optic System for Automatic Weighing in Motion of Transport
,”
Procedia Eng.
,
178
(
1
), pp.
5
12
.
2.
Romero
,
J. A.
,
Lozano-Guzmán
,
A. A.
,
Obregón-Biosca
,
S. A.
, and
Betanzo-Quezada
,
E.
,
2018
, “
A Plane Model of the Interaction of a Vehicle With the Road Infrastructure
,”
Adv. Eng. Softw.
,
117
, pp.
46
58
.
3.
Kim
,
R. E.
,
2020
, “
Classification of Variable Foundation Properties Based on Vehicle–Pavement–Foundation Interaction Dynamics
,”
Sensors (Switzerland)
,
20
(
21
), pp.
1
17
.
4.
Ding
,
H.
,
Yang
,
Y.
,
Chen
,
L. Q.
, and
Yang
,
S. P.
,
2014
, “
Vibration of Vehicle-Pavement Coupled System Based on a Timoshenko Beam on a Nonlinear Foundation
,”
J. Sound Vib.
,
333
(
24
), pp.
6623
6636
.
5.
Patil
,
V. A.
,
Sawant
,
V. A.
, and
Deb
,
K.
,
2013
, “
2D Finite Element Analysis of Rigid Pavement Considering Dynamic Vehicle-Pavement Interaction Effects
,”
Appl. Math. Model.
,
37
(
3
), pp.
1282
1294
.
6.
Xu
,
X.
,
Akbarian
,
M.
,
Gregory
,
J.
, and
Kirchain
,
R.
,
2019
, “
Role of the Use Phase and Pavement-Vehicle Interaction in Comparative Pavement Life Cycle Assessment as a Function of Context
,”
J. Cleaner Prod.
,
230
, pp.
1156
1164
.
7.
Wang
,
H.
,
Al-Qadi
,
I. L.
, and
Stanciulescu
,
I.
,
2012
, “
Simulation of Tyre-Pavement Interaction for Predicting Contact Stresses at Static and Various Rolling Conditions
,”
Int. J. Pavement Eng.
,
13
(
4
), pp.
310
321
.
8.
Ling
,
D. S.
,
Zhao
,
Y.
,
Huang
,
B.
,
Zhang
,
F.
, and
Zhou
,
Y.
,
2018
, “
Analysis of Dynamic Stress Path in Inhomogenous Subgrade Under Moving Aircraft Load
,”
Soil Dyn. Earthq. Eng.
,
111
, pp.
65
76
.
9.
Li
,
S.
,
Yang
,
S.
, and
Chen
,
L.
,
2013
, “
A Nonlinear Vehicle-Road Coupled Model for Dynamics Research
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021001
.
10.
Behnke
,
R.
,
Wollny
,
I.
,
Hartung
,
F.
, and
Kaliske
,
M.
,
2019
, “
Thermo-Mechanical Finite Element Prediction of the Structural Long-Term Response of Asphalt Pavements Subjected to Periodic Traffic Load: Tire-Pavement Interaction and Rutting
,”
Comput. Struct.
,
218
, pp.
9
31
.
11.
Shi
,
X. M.
, and
Cai
,
C. S.
,
2009
, “
Simulation of Dynamic Effects of Vehicles on Pavement Using a 3D Interaction Model
,”
J. Transp. Eng.
,
135
(
10
), pp.
736
744
.
12.
Li
,
Q.
,
Liu
,
J. Q.
, and
Liu
,
H.
,
2015
, “
Random Dynamic Response Analysis of Asphalt Pavement Based on the Vehicle-Pavement Interaction
,”
Appl. Mech. Mater.
,
744–746
, pp.
1288
1297
. www.scientific.net/AMM.744-746.1288
13.
Kim
,
S. M.
,
Jose
,
M. R.
, and
Kenneth
,
H. S.
,
1999
, “
Numerical Simulation of Rolling Dynamic Deflectometer Tests
,”
J. Transp. Eng.
,
125
(
2
), pp.
85
92
.
14.
Koh
,
C. G.
,
Ong
,
J. S. Y.
,
Chua
,
D. K. H.
, and
Feng
,
J.
,
2003
, “
Moving Element Method for Train-Track Dynamics
,”
Int. J. Numer. Methods Eng.
,
56
(
11
), pp.
1549
1567
.
15.
Xu
,
W. T.
,
Lin
,
J. H.
,
Zhang
,
Y. H.
,
Kennedy
,
D.
, and
Williams
,
F. W.
,
2009
, “
2D Moving Element Method for Random Vibration Analysis of Vehicles on Kirchhoffplate With Kelvin Foundation
,”
Lat. Am. J. Solids Struct.
,
6
, pp.
169
183
. https://lajss.org/index.php/LAJSS/article/view/212
16.
Reddy
,
J. N.
,
Nguyen
,
X. V.
,
Than Cao
,
T. N.
,
Lieu
,
Q. X.
, and
Luong
,
V. H.
,
2020
, “
An Integrated Moving Element Method (IMEM) for Hydroelastic Analysis of Infinite Floating Kirchhoff-Love Plates Under Moving Loads in a Shallow Water Environment
,”
Thin-Walled Struct.
,
155
, p.
106934
.
17.
Kim
,
R. E.
,
Kang
,
S.
,
Spencer
,
B. F.
,
Al-Qadi
,
I. L.
, and
Ozer
,
H.
,
2019
, “
Impact of Pavement Roughness and Deflection on Fuel Consumption Using Energy Dissipation
,”
J. Eng. Mech.
,
145
(
10
), p.
04019080
.
18.
Yang
,
C. J.
,
Xu
,
Y.
,
Zhu
,
W. D.
,
Fan
,
W.
,
Zhang
,
W. H.
, and
Mei
,
G. M.
,
2020
, “
A Three-Dimensional Modal Theory-Based Timoshenko Finite Length Beam Model for Train-Track Dynamic Analysis
,”
J. Sound Vib.
,
479
, pp.
1
22
.
19.
Bajer
,
C. I.
, and
Dyniewicz
,
B.
,
2012
,
Numerical Analysis of Vibrations of Structures Under Moving Inertial Load
,
Springer
,
New York
.
20.
Hong
,
D.
,
Tang
,
J.
, and
Ren
,
G.
,
2011
, “
Dynamic Modeling of Mass-Flowing Linear Medium With Large Amplitude Displacement and Rotation
,”
J. Fluids Struct.
,
27
(
8
), pp.
1137
1148
.
21.
Celaya
,
E. A.
,
Aguirrezabala
,
J. J. A.
, and
Chatzipantelidis
,
P.
,
2014
, “
Implementation of an Adaptive BDF2 Formula and Comparison With the MATLAB Ode15s
,”
Procedia Comput. Sci.
,
29
(
1
), pp.
1014
1026
.
22.
Xu
,
Y.
,
Zhu
,
W.
,
Fan
,
W.
,
Caijin
,
Y.
, and
Zhang
,
W.
,
2020
, “
A New Three-Dimensional Moving Timoshenko Beam Element for Moving Load Problem Analysis
,”
ASME J. Vib. Acoust.
,
142
(
3
), p.
031001
.
You do not currently have access to this content.