Abstract

This paper presents a new design method based on a robust-control strategy in the form of a linear matrix inequality (LMI) approach for a passive tuned mass damper (TMD), which is one of the common passive-control devices for structural vibration control. To apply the robust control theory, we first present an equivalent expression that describes a passive TMD as an active TMD. Then, some LMI-based condition is derived that not only guarantees robust stability but also allows us to adjust the robust H performance. In particular, this paper considers the transfer function from a seismic-wave input to structural responses. Unlike other methods, this method formulates the problem to be a convex optimization problem that ensures a global optimal solution and considers uncertainties of mass, damping, and stiffness of a structure for designing a TMD. Numerical example uses both a single-degree-of-freedom (SDOF) and 10DOF models and seismic waves. The simulation results demonstrated that the TMD that is designed by the presented method has good control performance even if the structural model includes uncertainties, which are the modeling errors.

References

1.
Sladek
,
J. R.
, and
Klingner
,
R. E.
,
1983
, “
Effect of Tuned-mass Dampers on Seismic Response
,”
J. Struct. Eng.
,
109
(
8
), pp.
2004
2009
.
2.
Ohtake
,
K.
,
Mataki
,
Y.
,
Ohkuma
,
T.
,
Kanda
,
J.
, and
Kitamura
,
H.
,
1992
, “
Full-scale Measurements of Wind Actions on Chiba Port Tower
,”
J. Wind Eng. Indus. Aerody.
,
43
(
1–3
), pp.
2225
2236
.
3.
Lu
,
X.
, and
Chen
,
J.
,
2011
, “
Mitigation of Wind-Induced Response of Shanghai Center Tower by Tuned Mass Damper
,”
Struct. Design Tall Special Buildings
,
20
(
4
), pp.
435
452
.
4.
Chung
,
L.-L.
,
Lai
,
Y.-A.
,
Yang
,
C.-S. W.
,
Lien
,
K.-H.
, and
Wu
,
L.-Y.
,
2013
, “
Semi-Active Tuned Mass Dampers With Phase Control
,”
J. Sound Vib.
,
332
(
15
), pp.
3610
3625
.
5.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
, 4th ed.,
Dover Publications
,
New York and London
.
6.
Michielsen
,
J.
,
Lopez
,
A. I.
, and
Nijmeijer
,
H.
,
2016
, “
LQR-Based Optimization of Multiple Tuned Resonators for Plate Sound Radiation Reduction
,”
J. Sound Vib.
,
363
(
17
), pp.
166
180
.
7.
Chang
,
C.-M.
,
Shia
,
S.
, and
Lai
,
Y.-A.
,
2018
, “
Seismic Design of Passive Tuned Mass Damper Parameters Using Active Control Algorithm
,”
J. Sound Vib.
,
426
(
21
), pp.
150
165
.
8.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
,
2016
, “
Analytical Solution to H and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
.
9.
Tang
,
X.
,
Liu
,
Y.
,
Cui
,
W.
, and
Zuo
,
L.
,
2016
, “
Analytical Solution to H2 and H Optimizations of Resonant Shunted Electromagnetic Tuned Mass Damper and Vibration Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011018
.
10.
Salvi
,
J.
,
Rizzi
,
E.
,
Rustighi
,
E.
, and
Ferguson
,
N. S.
,
2018
, “
Optimum Tuning of Passive Tuned Mass Dampers for the Mitigation of Pulse-Like Responses
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061014
.
11.
Yang
,
J. N.
,
Lin
,
S.
,
Kim
,
J. -H.
, and
Agrawal
,
A. K.
,
2002
, “
Optimal Design of Passive Energy Dissipation Systems Based on H and H2 Performances
,”
Earth. Eng. Struct. Dynam.
,
31
(
4
), pp.
921
936
.
12.
Nguyen
,
H. C.
,
Sone
,
A.
,
Iba
,
D.
, and
Masuda
,
A.
,
2008
, “
Design of Passive Suspension System of Railway Vehicles Via Control Theory
,”
J. Syst. Design Dynam.
,
2
(2), pp.
518
527
.
13.
Bai
,
Y.
, and
Grigoriadis
,
K. M.
,
2009
, “
Damping Parameter Design Optimization in Structural Systems Using An Explicit H Norm Bound
,”
J. Sound Vib.
,
319
(
3–5
), pp.
795
806
.
14.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2003
, “
Structured H2 Optimization of Vehicle Suspensions Based on Multi-Wheel Models
,”
Vehicle Syst. Dynam.
,
40
(
5
), pp.
351
371
.
15.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2005
, “
Optimization of the Individual Stiffness and Damping Parameters in Multiple-Tuned-Mass-Damper Systems
,”
ASME J. Vib. Acoust.
,
127
(
1
), pp.
77
83
.
16.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2006
, “
The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
56
65
.
17.
Palacios Quiñonero
,
F.
,
Rubió Massegú
,
J.
,
Rossell Garriga
,
J. M.
, and
Karimi
,
H. R.
,
2012
, “
Optimal Passive-Damping Design Using a Decentralized Velocity-Feedback H Approach
,”
Model., Identif. Control
,
33
(
3
), pp.
87
97
.
18.
Marano
,
G. C.
, and
Greco
,
R.
,
2009
, “
Robust Optimum Design of Tuned Mass Damper for High-Rise Buildings Under Moderate Earthquake
,”
Struct. Design Tall Special Build.
,
18
(
8
), pp.
823
838
.
19.
Rathi
,
A. K.
, and
Chakraborty
,
A.
,
2015
, “
Robust Design of TMD for Vibration Control of Uncertain Systems Using Adaptive Response Surface Method
,”
Adv. Struct. Eng.
,
1505
1517
.
20.
Dell’Elce
,
L.
,
Gourc
,
E.
, and
Kerschen
,
G.
,
2018
, “
A Robust Equal-Peak Method for Uncertain Mechanical Systems
,”
J. Sound. Vib.
,
414
(
3
), pp.
97
109
.
21.
Iba
,
D.
,
Masuda
,
A.
, and
Sone
,
A.
,
2006
, “
Robust Design Method of Multi-Degree-of-Freedom Passive Tuned Mass Damper by Control Theory
,” ASME Pressure Vessels and Piping Conference.
22.
Iba
,
D.
,
Sone
,
A.
, and
Masuda
,
A.
,
2005
, “
Robust Design Method of Multi-Degree-of-Freedom Passive Tuned Mass Damper by Control Theory
,”
Trans. JSCE (In Japanese)
,
71
, pp.
24
28
.
23.
Skelton
,
R. E.
,
Iwasaki
,
T.
, and
Grigoriadis
,
D. E.
,
1997
,
A Unified Algebraic Approach to Linear Control Design
,
Taylor & Francis
,
Bristol, UK
.
24.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
25.
Nonami
,
K.
,
2010
,
System Dynamics and Vibration Control (In Japanese)
,
Corona Publishing Co., Ltd.
,
Tokyo
.
26.
FEMA-P695
,
2009
.
Quantification of building seismic performance factors
.
27.
Gang
,
S.
,
Jiaohao
,
L.
,
Yao
,
Z.
,
Howson
,
W. P.
, and
Williams
,
F. W.
,
2007
, “
Robust H Control for Aseismic Structures With Uncertainties in Model Parameters
,”
Earth. Eng. Eng. Vib.
,
6
(
4
), pp.
409
416
.
28.
Chopra
,
A. K.
,
2016
,
Dynamics of Structures-Theory and Applications to Earthquake Engineering
, 5th ed.,
Prentice Hall
,
London
.
29.
Hagedorn
,
P.
, and
Spelsberg-Korspeter
,
G.
,
2014
,
Active and Passive Vibration Control of Structures
,
Springer
,
Udine
.
30.
Minami
,
T.
,
1987
, “
Stiffness Deterioration Measured on a Steel-Reinforced Concrete Building
,”
Earth. Eng. Struct. Dynam.
,
15
(
6
), pp.
697
709
.
You do not currently have access to this content.