Abstract

The theory governing breaking the reciprocity in acoustic metamaterials by using active eigen-structure control strategy is presented. Such theoretical foundation aims at demonstrating the ability of introducing controlled attenuation (or amplification) of the flow energy of acoustic waves along one particular propagation direction, in an acoustic metamaterial, while generating an amplification (or attenuation) when the propagation direction is reversed. This non-reciprocal transmission of the acoustic energy can be achieved in a flexible manner by just programming the metamaterial rather than by the alteration of the hard wiring of the components of the metamaterial. The developed theory is based on scaling and shaping the eigenvectors of the closed-loop system, relative to the open-loop system, to achieve any desirable attenuation or amplification patterns between various locations in the metamaterial during forward and backward propagations. Closed-form expressions are derived, using the linear control theory, for the transfer functions governing the transmission of waves between sources and receivers during forward and backward transmissions as a function of the eigenvector scaling parameters. These transfer functions clearly demonstrate the ability to break the reciprocity when the eigen-structure controller is used. Numerical examples are presented to demonstrate the merits and capabilities of the proposed approach in controlling the spatial distribution of the acoustic energy in one-dimensional acoustic ducts. During this entire process, the system remains behaving in a linear fashion. Generalization of the presented strategies to two-dimensional acoustic systems is a natural extension of the present work.

References

1.
Nassar
,
H.
,
Hussein
,
M.
,
Yousefzadeh
,
B.
,
Fleury
,
R.
,
Ruzzene
,
M.
,
Alù
,
A.
,
Daraio
,
C.
,
Norris
,
A. N.
,
Huang
,
G.
, and
Haberman
,
M. R.
,
2020
, “
Nonreciprocity in Acoustic and Elastic Materials
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
667
685
.
2.
Liu
,
C.
,
Du
,
Z. L.
,
Sun
,
Z.
,
Gao
,
H. J.
, and
Guo
,
X.
,
2015
, “
Frequency-Preserved Acoustic Diode Model With High Forward Power-Transmission Rate
,”
Phys. Rev. Appl.
,
3
(
6
), p.
064014
.
3.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J. C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
(
10
), p.
104301
.
4.
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2014
, “
Non-Reciprocal and Highly Nonlinear Active Acoustic Metamaterials
,”
Nat. Commun.
,
5
(
1
), p.
3398
.
5.
Gu
,
Z.-M.
,
Hu
,
J.
,
Liang
,
B.
,
Zou
,
X.-Y.
, and
Cheng
,
J.-C.
,
2016
, “
Broadband Non-Reciprocal Transmission of Sound With Invariant Frequency
,”
Sci. Rep.
,
6
(
1
), p.
19824
.
6.
Merkel
,
A.
,
Willatzen
,
M.
, and
Christensen
,
J.
,
2018
, “
Dynamic Nonreciprocity in Loss-Compensated Piezophononic Media
,”
Phys. Rev. Appl.
,
9
(
3
), p.
034033
.
7.
Petrover
,
K.
, and
Baz
,
A.
,
2020
, “
Finite Element Modeling of One-Dimensional Nonreciprocal Acoustic Metamaterial With Anti-parallel Diodes
,”
J. Acoust. Soc. Am.
,
148
(
1
), pp.
334
346
.
8.
Raval
,
S.
,
Petrover
,
K.
, and
Baz
,
A.
,
2021
, “
Experimental Characterization of a One-Dimensional Nonreciprocal Acoustic Metamaterial With Anti-Parallel Diodes
,”
J. Appl. Phys.
,
129
(
7
), p.
074502
.
9.
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2016
, “
Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures
,”
New J. Phys.
,
18
(
8
), p.
083047
.
10.
Nassar
,
H.
,
Xu
,
X. C.
,
Norris
,
A. N.
, and
Huang
,
G. L.
,
2017
, “
Modulated Phononic Crystals: Nonreciprocal Wave Propagation and Willis Materials
,”
J. Mech. Phys. Solids
,
101
, pp.
10
29
.
11.
Goldsberry
,
B. M.
,
Wallen
,
S. P.
, and
Haberman
,
M. R.
,
2019
, “
Non-Reciprocal Wave Propagation in Mechanically-Modulated Continuous Elastic Metamaterials
,”
J. Acoust. Soc. Am.
,
146
(
1
), pp.
782
788
.
12.
Goldsberry
,
B. M.
,
Wallen
,
S. P.
, and
Haberman M
,
R.
,
2020
, “
Nonreciprocal Vibrations of Finite Elastic Structures With Spatiotemporally Modulated Material Properties
,”
Phys. Rev. B
,
102
(
1
), p.
014312
.
13.
Fleury
,
R.
,
Sounas
,
D. L.
,
Sieck
,
C. F.
,
Haberman
,
M. R.
, and
Alù
,
A.
,
2014
, “
Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
,”
Science
,
343
(
6170
), pp.
516
519
.
14.
Liu
,
X.
,
Cai
,
X.
,
Guo
,
Q.
, and
Yang
,
J.
,
2019
, “
Robust Nonreciprocal Acoustic Propagation in a Compact Acoustic Circulator Empowered by Natural Convection
,”
New J. Phys.
,
21
(
5
), p.
053001
.
15.
Attarzadeh
,
M. A.
,
Maleki
,
S.
,
Crassidis
,
J. L.
, and
Nouh
,
M.
,
2019
, “
Non-Reciprocal Wave Phenomena in Energy Self-rReliant Gyric Metamaterials
,”
J. Acoust. Soc. Am.
,
146
(
1
), pp.
789
801
.
16.
Wang
,
Y.
,
Yousefzadeh
,
B.
,
Chen
,
H.
,
Nassar
,
H.
,
Huang
,
G.
, and
Daraio
,
C.
,
2018
, “
Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice
,”
Phys. Rev. Lett.
,
121
(
19
), p.
194301
.
17.
Yi
,
K.
,
Ouisse
,
M.
,
Sadoulet-Reboul
,
E.
, and
Matten
,
G.
,
2019
, “
Active Metamaterials With Broadband Controllable Stiffness for Tunable Band Gaps and Non-Reciprocal Wave Propagation
,”
Smart Mater. Struct.
,
28
(
6
), p.
065025
.
18.
Popa
,
B.-I.
,
Shinde
,
D.
,
Konneker
,
A.
, and
Cummer
,
S. A.
,
2015
, “
Active Acoustic Metamaterials Reconfigurable in Real-Time
,”
Phys. Rev. B
,
91
(
22
), p.
220303(R)
.
19.
Karkar
,
S.
,
De Bono
,
E.
,
Collet
,
M.
,
Matten
,
G.
,
Ouisse
,
M.
, and
Rive
,
E.
,
2019
, “
Broadband Nonreciprocal Acoustic Propagation Using Programmable Boundary Conditions: From Analytical Modeling to Experimental Implementation
,”
Phys. Rev. Appl.
,
12
(
5
), p.
054033
.
20.
Zhai
,
Y.
,
Kwon
,
H.-S.
, and
Popa
,
B.-I.
,
2019
, “
Active Willis Metamaterials for Ultra-Compact Non-Reciprocal Linear Acoustic Devices
,”
Phys. Rev. B
,
99
(
22
), p.
220301
.
21.
Baz
,
A.
,
2020
, “
Active Synthesis of a Gyroscopic-Nonreciprocal Acoustic Metamaterial
,”
J. Acoust. Soc. Am.
,
148
(
3
), pp.
1271
1288
.
22.
Raval
,
S.
,
Zhou
,
H.
, and
Baz
,
A.
,
2021
, “
Experimental Implementation of an Active Synthesis of a Gyroscopic-Nonreciprocal Acoustic Metamaterial
,”
J. Appl. Phys.
,
129
(
7
), p.
074501
.
23.
Baz
,
A.
,
2018
, “
Active Nonreciprocal Acoustic Metamaterials Using a Switching Controller
,”
J. Acoust. Soc. Am.
,
143
(
3
), pp.
1376
1384
.
24.
Baz
,
A.
,
2019
, “
Nonreciprocal Acoustic Metamaterials With Programmable Virtual Resistors
,”
Paper 1pSA1, 177th Acoustical Society of America Meeting
,
Louisville, KY
, Journal of the Acoustical Society of America, 145 (3), Pt. 2, p.
1686
.
25.
Baz
,
A.
,
2020
, “
Active Nonreciprocal Metamaterial Using an Eigen-Structure Assignment Control Strategy
,”
J. Acoust. Soc. Am.
,
147
(
4
), pp.
2656
2669
.
26.
Zhou
,
H.
, and
Baz
,
A.
,
2021
, “
Experimental Realization of an Active Nonreciprocal Metamaterial Using an Eigen-Structure Assignment Control Strategy
,”
J. Acoust. Soc. Am.
,
150
(
2
), pp.
1092
1107
.
27.
Srinathkumar
,
S.
,
2011
,
Eigen-Structure Control Algorithms: Applications to Aircraft Rotorcraft Handling Qualities Design: IET Control Engineering Series 74
,
The Institution of Engineering and Technology
,
Herts, UK
.
28.
Liu
,
G. P.
, and
Patton
,
R.
,
1998
,
Eigen-Structure Assignment for Control System Design
,
John Wiley & Sons, Inc.
,
New York
.
29.
Rastgaar
,
M.
,
Ahmadian
,
M.
, and
Southward
,
S.
,
2009
, “
A Review on Eigen-Structure Assignment Methods and Orthogonal Eigen-Structure Control of Structural Vibrations
,”
Shock and Vib.
,
16
(
6
), pp.
555
564
.
30.
Wang
,
G.-S.
,
Lv
,
Q.
,
Liang
,
B.
, and
Duan
,
G.-R.
,
2005
, “
Design of Reconfiguring Control Systems via State Feedback Eigen-Structure Assignment
,”
Int. J. Inf. Technol.
,
11
(
7
), pp.
61
70
.
31.
Clarke
,
T.
,
Griffin
,
S. J.
, and
Ensor
,
J.
,
2003
, “
Output Feedback Eigen-Structure Assignment Using a New Reduced Orthogonality Condition
,”
Int. J. Control
,
76
(
4
), pp.
390
402
.
32.
Andry
,
A. N.
, Jr.
,
Shapiro
,
E. Y.
, and
Chung
,
J. C.
,
1983
, “
Eigen-Structure Assignment for Linear Systems
,”
IEEE Trans. Aerosp. Electron. Syst.
,
AES-19
(
5
), pp.
711
729
.
33.
White
,
B. A.
,
1995
, “
Eigen-Structure Assignment: A Survey
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
209
(
1
), pp.
1
11
.
34.
Alexandridis
,
A. T.
, and
Paraskevopoulos
,
P. N.
,
1996
, “
A New Approach to Eigen-Structure Assignment by Output Feedback
,”
IEEE Trans. Automat. Contr.
,
41
(
7
), pp.
1046
1050
.
35.
Yanai
,
H.
,
Takeuchi
,
K.
, and
Takane
,
Y.
,
2011
,
Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition
,
Springer
,
New York
.
36.
Galántai
,
A.
,
2004
,
Projectors and Projection Methods
,
Springer
,
New York
.
37.
Brezinski
,
C.
,
1997
, “
Projection Methods for Systems of Equations
,”
J. Comput. Appl. Math.
,
77
(
1–2
), pp.
35
51
.
38.
Miquel
,
T.
,
2021
, “
State Space Modelling
,”
Master, ENAC, France, ⟨hal-02987750v2⟩
.
You do not currently have access to this content.