Abstract

This technical note is concerned with aeroelastic flutter problems: the analysis of aeroelastic systems undergoing airspeed-dependent dynamic instability. Existing continuation methods for parametric stability analysis are based on marching along an airspeed parameter until the flutter point is found—an approach that may waste computational effort on low-airspeed system behavior, before a flutter point is located and characterized. Here, we describe a pseudospectral continuation approach that instead marches outward from the system’s flutter points, from points of instability to points of increasing damping, allowing efficient characterization of the subcritical and supercritical behavior of the system. This approach ties together aeroelastic stability analysis and abstract linear algebra and, by reducing the sample space in which the analysis needs to take place, provides efficient methods for computing practical aeroelastic stability properties—for instance, flight envelopes based on maximum modal damping and the location of borderline-stable zones.

References

1.
Trefethen
,
L. N.
,
1992
, “Pseudospectra of Matrices,”
Numerical Analysis
,
D. F.
Griffiths
, and
G. A.
Watson
, eds.,
Longman Scientific and Technical, Harlow
,
Essex, UK
, pp.
234
266
.
2.
Lancaster
,
P.
, and
Psarrakos
,
P.
,
2005
, “
On the Pseudospectra of Matrix Polynomials
,”
SIAM J. Matrix Anal. Appl.
,
27
(
1
), pp.
115
129
.
3.
Demmel
,
J.
,
1987
, “
A Counterexample for Two Conjectures About Stability
,”
IEEE Trans. Automat. Contr.
,
32
(
4
), pp.
340
342
.
4.
Reddy
,
S. C.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1993
, “
Pseudospectra of the Orr–Sommerfeld Operator
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
15
47
.
5.
Song
,
Z.-G.
,
Yang
,
T.-Z.
,
Li
,
F.-M.
,
Carrera
,
E.
, and
Hagedorn
,
P.
,
2018
, “
A Method of Panel Flutter Suppression and Elimination for Aeroelastic Structures in Supersonic Airflow
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
064501
.
6.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2019
, “
Versatile Absolute Nodal Coordinate Formulation Model for Dynamic Folding Wing Deployment and Flutter Analyses
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011014
.
7.
Sina
,
S. A.
,
Farsadi
,
T.
, and
Haddadpour
,
H.
,
2013
, “
Aeroelastic Stability and Response of Composite Swept Wings in Subsonic Flow Using Indicial Aerodynamics
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051019
.
8.
Wang
,
X.
,
Li
,
L.
, and
Zhou
,
Y.
,
2016
, “
Aeroelastic Dynamics Stability of Rotating Sandwich Annular Plate With Viscoelastic Core Layer
,”
Appl. Math. Mech.
,
37
(
1
), pp.
107
120
.
9.
Lind
,
R.
, and
Brenner
,
M.
,
2012
,
Robust Aeroservoelastic Stability Analysis: Flight Test Applications
,
Springer
,
Berlin, Germany
.
10.
Pons
,
A.
, and
Gutschmidt
,
S.
,
2017
, “
Multiparameter Solution Methods for Semistructured Aeroelastic Flutter Problems
,”
AIAA J.
,
55
(
10
), pp.
3530
3538
.
11.
Pons
,
A.
, and
Gutschmidt
,
S.
,
2019
, “
Nonlinear Multiparameter Eigenvalue Problems in Aeroelasticity
,”
Int. J. Struct. Stab. Dyn.
,
19
(
5
), p.
1941008
.
12.
Pons
,
A.
, and
Gutschmidt
,
S.
,
2016
, “
Aeroelastic Flutter of Continuous Systems: A Generalized Laplace Transform Method
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081005
.
13.
Hochstenbach
,
M. E.
, and
Plestenjak
,
B.
,
2003
, “
Backward Error, Condition Numbers, and Pseudospectra for the Multiparameter Eigenvalue Problem
,”
Linear Algebra Appl.
,
375
, pp.
63
81
.
14.
Pons
,
A.
, and
Gutschmidt
,
S.
,
2018
, “
Multiparameter Spectral Analysis for Aeroelastic Instability Problems
,”
ASME J. Appl. Mech.
,
85
(
6
), p.
061011
.
15.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
SIAM
,
Philadelphia, PA
.
16.
Trefethen
,
L. N.
,
1999
, “
Computation of Pseudospectra
,”
Acta Numer.
,
8
, pp.
247
295
.
17.
van Dorsselaer
,
J. L. M.
,
Kraaijevanger
,
J. F. B. M.
, and
Spijker
,
M. N.
,
1993
, “
Linear Stability Analysis in the Numerical Solution of Initial Value Problems
,”
Acta Numer.
,
2
, pp.
199
237
.
18.
Dowell
,
E. H.
,
2015
,
A Modern Course in Aeroelasticity
,
Springer
,
Berlin, Germany
.
19.
Meyer
,
E. E.
,
2015
, “
Continuation and Bifurcation in Linear Flutter Equations
,”
AIAA J.
,
53
(
10
), pp.
3113
3116
.
20.
Meyer
,
E. E.
,
2014
, “
Unified Approach to Flutter Equations
,”
AIAA J.
,
52
(
3
), pp.
627
633
.
21.
Mantegazza
,
C. C.-P.
,
1978
, “
Continuation and Direct Solution of the Flutter Equation
,”
Comput. Struct.
,
8
(
2
), pp.
185
192
.
22.
Keller
,
H. B.
,
1977
, “Numerical Solution of Bifurcation and Non Linear Eigenvalue Problems,”
Application of Bifurcation Theory
,
PH
Rabinowitz
, ed.,
Academic Press
,
New York
, pp.
359
389
.
23.
Pons
,
A.
,
2015
, “
Aeroelastic Flutter as a Multiparameter Eigenvalue Problem
,”
Master’s thesis
,
University of Canterbury
,
New Zealand
.
24.
Goland
,
M.
,
1945
, “
The Flutter of a Uniform Cantilever Wing
,”
ASME J. Appl. Mech.
,
12
(
4
), pp.
A197
A208
.
25.
Theodorsen
,
T.
,
1949
,
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,
NACA
,
Washington, DC
,
496
.
26.
Borello
,
F.
,
Cestino
,
E.
, and
Frulla
,
G.
,
2010
, “
Structural Uncertainty Effect on Classical Wing Flutter Characteristics
,”
J. Aerosp. Eng.
,
23
(
4
), pp.
327
338
.
27.
Peters
,
D. A.
,
Karunamoorthy
,
S.
, and
Cao
,
W.-M.
,
1995
, “
Finite State Induced Flow Models. I—Two-Dimensional Thin Airfoil
,”
J. Aircr.
,
32
(
2
), pp.
313
322
.
28.
Rizzo
,
F.
, and
Caracoglia
,
L.
,
2018
, “
Examination of Experimental Errors in Scanlan Derivatives of a Closed-Box Bridge Deck
,”
Wind Struct.
,
26
(
4
), pp.
231
251
.
29.
Rizzo
,
F.
,
Caracoglia
,
L.
, and
Montelpare
,
S.
,
2018
, “
Predicting the Flutter Speed of a Pedestrian Suspension Bridge Through Examination of Laboratory Experimental Errors
,”
Eng. Struct.
,
172
, pp.
589
613
.
30.
Ding
,
Q.
, and
Wang
,
D.-L.
,
2006
, “
The Flutter of an Airfoil With Cubic Structural and Aerodynamic Non-Linearities
,”
Aerosp. Sci. Technol.
,
10
(
5
), pp.
427
434
.
31.
Meerbergen
,
K.
, and
Spence
,
A.
,
2010
, “
Inverse Iteration for Purely Imaginary Eigenvalues With Application to the Detection of Hopf Bifurcations in Large-Scale Problems
,”
SIAM J. Matrix Anal. Appl.
,
31
(
4
), pp.
1982
1999
.
32.
Li
,
S.
, and
Caracoglia
,
L.
,
2019
, “
Surrogate Model Monte Carlo Simulation for Stochastic Flutter Analysis of Wind Turbine Blades
,”
J. Wind. Eng. Ind. Aerodyn.
,
188
, pp.
43
60
.
33.
Canor
,
T.
,
Caracoglia
,
L.
, and
Denoël
,
V.
,
2015
, “
Application of Random Eigenvalue Analysis to Assess Bridge Flutter Probability
,”
J. Wind. Eng. Ind. Aerodyn.
,
140
, pp.
79
86
.
34.
Wagenknecht
,
T.
,
Green
,
K.
,
Adhikari
,
S.
, and
Michiels
,
W.
,
2006
, “
Structured Pseudospectra and Random Eigenvalues Problems in Vibrating Systems
,”
AIAA J.
,
44
(
10
), pp.
2404
2414
.
You do not currently have access to this content.