Abstract

Incorporating wave energy converters (WECs) into existing oceanographic instrument systems and offshore floating platforms can not only enhance the performance of these applications but reduce operational expenses. This article studies a system integrating a floater WEC with a floating spar platform via the inerter pendulum vibration absorber with a power take-off (IPVA-PTO) mechanism, with a focus on random wave excitation. Experiments and simulations performed on a simplified system in which the WEC is held fixed and radiation damping is absent reveal that the power spectral density (PSD) of the system consists of odd-order superharmonics when the peak frequency of wave excitation is equal to the natural frequency of the system. It is found that the odd-order superharmonics are created by the IPVA and have a strong correlation with an enhancement in power output. Simulations without the aforementioned simplifications confirm the odd-order superharmonics and the correlation, and demonstrate an improvement in the capture width ratio (CWR) of 161.4% at resonance without compromising the response amplitude operator (RAO) of the spar, in comparison with a linear benchmark with optimal electrical damping.

References

1.
LiVecchi
,
A.
,
Copping
,
A.
,
Jenne
,
D.
,
Gorton
,
A.
,
Preus
,
R.
,
Gill
,
G.
,
Robichaud
,
R.
,
Green
,
R.
,
Geerlofs
,
S.
,
Gore
,
S.
et al.,
2019
, “Powering the Blue Economy; Exploring Opportunities for Marine Renewable Energy in Maritime Markets,”
US Department of Energy, Office of Energy Efficiency and Renewable Energy
,
WA, DC
, 207.
2.
Goda
,
Y.
,
2010
,
Random Seas and Design of Maritime Structures
, Vol.
33
,
World Scientific
,
Singapore
.
3.
Palha
,
A.
,
Mendes
,
L.
,
Fortes
,
C. J.
,
Brito-Melo
,
A.
, and
Sarmento
,
A.
,
2010
, “
The Impact of Wave Energy Farms in the Shoreline Wave Climate: Portuguese Pilot Zone Case Study Using Pelamis Energy Wave Devices
,”
Renew. Energy
,
35
(
1
), pp.
62
77
.
4.
Previsic
,
M.
,
2004
, “Offshore Wave Energy Conversion Devices,”
Electric Power Research Institute (EPRI) Inc.
,
Palo Alto, CA
, pp.
26
130
.
5.
Kofoed
,
J. P.
,
Frigaard
,
P.
,
Friis-Madsen
,
E.
, and
Sørensen
,
H. C.
,
2006
, “
Prototype Testing of the Wave Energy Converter Wave Dragon
,”
Renew. Energy
,
31
(
2
), pp.
181
189
.
6.
Babarit
,
A.
,
Guglielmi
,
M.
, and
Clément
,
A. H.
,
2009
, “
Declutching Control of a Wave Energy Converter
,”
Ocean Eng.
,
36
(
12–13
), pp.
1015
1024
.
7.
Babarit
,
A.
,
2015
, “
A Database of Capture Width Ratio of Wave Energy Converters
,”
Renew. Energy
,
80
, pp.
610
628
.
8.
Saenz-Aguirre
,
A.
,
Saenz
,
J.
,
Ulazia
,
A.
, and
Ibarra-Berastegui
,
G.
,
2022
, “
Optimal Strategies of Deployment of Far Offshore Co-located Wind-Wave Energy Farms
,”
Energy Convers. Manage.
,
251
, p.
114914
.
9.
Astariz
,
S.
, and
Iglesias
,
G.
,
2015
, “
The Economics of Wave Energy: A Review
,”
Renew. Sust. Energ. Rev.
,
45
, pp.
397
408
.
10.
Nguyen
,
H. P.
,
Wang
,
C.
,
Tay
,
Z.
, and
Luong
,
V.
,
2020
, “
Wave Energy Converter and Large Floating Platform Integration: A Review
,”
Ocean Eng.
,
213
, p.
107768
.
11.
Muliawan
,
M. J.
,
Karimirad
,
M.
, and
Moan
,
T.
,
2013
, “
Dynamic Response and Power Performance of a Combined Spar-Type Floating Wind Turbine and Coaxial Floating Wave Energy Converter
,”
Renew. Energy
,
50
, pp.
47
57
.
12.
Wan
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Experimental and Numerical Study of Hydrodynamic Responses of a Combined Wind and Wave Energy Converter Concept in Survival Modes
,”
Coast. Eng.
,
104
, pp.
151
169
.
13.
Cheng
,
Z.
,
Wen
,
T. R.
,
Ong
,
M. C.
, and
Wang
,
K.
,
2019
, “
Power Performance and Dynamic Responses of a Combined Floating Vertical Axis Wind Turbine and Wave Energy Converter Concept
,”
Energy
,
171
, pp.
190
204
.
14.
Zhou
,
Y.
,
Ning
,
D.
,
Chen
,
L.
,
Mayon
,
R.
, and
Zhang
,
C.
,
2023
, “
Experimental Investigation on an OWC Wave Energy Converter Integrated Into a Floating Offshore Wind Turbine
,”
Energy Convers. Manage.
,
276
, p.
116546
.
15.
Michailides
,
C.
,
2021
, “
Hydrodynamic Response and Produced Power of a Combined Structure Consisting of a Spar and Heaving Type Wave Energy Converters
,”
Energies
,
14
(
1
), p.
225
.
16.
Haces-Fernandez
,
F.
,
Li
,
H.
, and
Ramirez
,
D.
,
2018
, “
Assessment of the Potential of Energy Extracted From Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico
,”
Energies
,
11
(
5
), p.
1084
.
17.
Oliveira-Pinto
,
S.
,
Rosa-Santos
,
P.
, and
Taveira-Pinto
,
F.
,
2019
, “
Electricity Supply to Offshore Oil and Gas Platforms From Renewable Ocean Wave Energy: Overview and Case Study Analysis
,”
Energy Convers. Manage.
,
186
, pp.
556
569
.
18.
Forristall
,
G. Z.
,
1981
, “
Measurements of a Saturated Range in Ocean Wave Spectra
,”
J. Geophys. Res. Oceans
,
86
(
C9
), pp.
8075
8084
.
19.
Liang
,
C.
,
2016
, “
On the Dynamics and Design of a Wave Energy Converter With Mechanical Motion Rectifier
,” Ph.D. thesis,
State University of New York at Stony Brook
,
Stony Brook, NY
.
20.
Hwang
,
P. A.
,
Teague
,
W. J.
,
Jacobs
,
G. A.
, and
Wang
,
D. W.
,
1998
, “
A Statistical Comparison of Wind Speed, Wave Height, and Wave Period Derived From Satellite Altimeters and Ocean Buoys in the Gulf of Mexico Region
,”
J. Geophys. Res. Oceans
,
103
(
C5
), pp.
10451
10468
.
21.
Amores
,
A.
, and
Marcos
,
M.
,
2020
, “
Ocean Swells Along the Global Coastlines and Their Climate Projections for the Twenty-First Century
,”
J. Clim.
,
33
(
1
), pp.
185
199
.
22.
Subbulakshmi
,
A.
, and
Sundaravadivelu
,
R.
,
2016
, “
Heave Damping of Spar Platform for Offshore Wind Turbine With Heave Plate
,”
Ocean Eng.
,
121
, pp.
24
36
.
23.
Koo
,
B.
,
Kim
,
M.
, and
Randall
,
R.
,
2004
, “
Mathieu Instability of a Spar Platform With Mooring and Risers
,”
Ocean Eng.
,
31
(
17–18
), pp.
2175
2208
.
24.
Gupta
,
A.
, and
Tai
,
W.-C.
,
2021
, “
Vibration Suppression of a Harmonically Forced Oscillator Via a Parametrically Excited Centrifugal Pendulum
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online, Virtual
,
Aug. 17–19
,
p. V010T10A016
.
25.
Gupta
,
A.
,
Kiet Duong
,
V. T.
, and
Tai
,
W.-C.
,
2023
, “
Nonlinear Energy Transfer of a Spar-Floater System Using the Inerter Pendulum Vibration Absorber
,”
ASME J. Vib. Acoust.
,
145
(
5
), p.
051005
.
26.
Gupta
,
A.
, and
Tai
,
W.-C.
,
2024
, “
Nonlinear Dynamics of a Heaving Spar-Floater System Integrated With Inerter Pendulum Vibration Absorber Power Take-Off for Wave Energy Conversion
,”
Mech. Syst. Signal Process.
,
209
, p.
111088
.
27.
Li
,
G.
, and
Zhang
,
S.
,
2021
, “
The Hydrodynamic Coefficient Analysis and Motion Control of the Lingyun Moveable Lander
,”
Geofluids
,
2021
, pp.
1
23
.
28.
Gupta
,
A.
, and
Tai
,
W.-C.
,
2023
, “
Ocean Wave Energy Conversion With a Spar-Floater System Using a Nonlinear Inerter Pendulum Vibration Absorber
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
29.
Beatty
,
S. J.
,
Hall
,
M.
,
Buckham
,
B. J.
,
Wild
,
P.
, and
Bocking
,
B.
,
2015
, “
Experimental and Numerical Comparisons of Self-Reacting Point Absorber Wave Energy Converters in Regular Waves
,”
Ocean Eng.
,
104
, pp.
370
386
.
30.
Gupta
,
A.
, and
Tai
,
W.-C.
,
2022
, “
The Response of an Inerter-Based Dynamic Vibration Absorber With a Parametrically Excited Centrifugal Pendulum
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041011
.
31.
Chakrabarti
,
S.
,
2005
,
Handbook of Offshore Engineering (2-Volume Set)
, Vol.
1
,
Elsevier
,
Amsterdam, The Netherlands
.
32.
Heller
,
V.
,
2011
, “
Scale Effects in Physical Hydraulic Engineering Models
,”
J. Hydraul. Res.
,
49
(
3
), pp.
293
306
.
33.
Rao
,
M. J.
,
Nallayarasu
,
S.
, and
Bhattacharyya
,
S.
,
2021
, “
Numerical and Experimental Studies of Heave Damping and Added Mass of Spar With Heave Plates Using Forced Oscillation
,”
Appl. Ocean Res.
,
111
, p.
102667
.
34.
Chen
,
L.-Q.
, and
Jiang
,
W.-A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
35.
Bureau of Safety and Environmental Enforcement
,
2024
, “
Platform Structures Data
,” https://www.data.bsee.gov/Platform/PlatformStructures/Default.aspx, Accessed November 28, 2024.
36.
Marine Hydrodynamics Laboratory
,
2024
, “
Academics
,”
University of Michigan
,
Ann Arbor, MI
, https://mhl.engin.umich.edu/academics/, Accessed October 10, 2024.
37.
Veritas
,
N.
,
2000
,
Environmental Conditions and Environmental Loads
,
Det Norske Veritas Oslo
,
Norway
.
38.
Mérigaud
,
A.
,
2018
, “
A Harmonic Balance Framework for the Numerical Simulation of Non-Linear Wave Energy Converter Models in Random Seas
,” Ph.D. thesis,
National University of Ireland
,
Maynooth, Ireland
.
39.
Freund
,
I.
,
1994
, “
Optical Vortices in Gaussian Random Wave Fields: Statistical Probability Densities
,”
JOSA A
,
11
(
5
), pp.
1644
1652
.
40.
Akbari
,
H.
,
Panahi
,
R.
, and
Amani
,
L.
,
2020
, “
Improvement of Double-Peaked Spectra: Revisiting the Combination of the Gaussian and the JONSWAP Models
,”
Ocean Eng.
,
198
, p.
106965
.
41.
Zheng
,
C.-W.
,
Li
,
X.-H.
,
Azorin-Molina
,
C.
,
Li
,
C.-Y.
,
Wang
,
Q.
,
Xiao
,
Z.-N.
,
Yang
,
S.-B.
,
Chen
,
X.
, and
Zhan
,
C.
,
2022
, “
Global Trends in Oceanic Wind Speed, Wind-Sea, Swell, and Mixed Wave Heights
,”
Appl. Energy
,
321
, p.
119327
.
42.
Chen
,
J.
,
Liu
,
Z.
,
Song
,
Y.
,
Peng
,
Y.
, and
Li
,
J.
,
2022
, “
Experimental Study on Dynamic Responses of a Spar-Type Floating Offshore Wind Turbine
,”
Renew. Energy
,
196
, pp.
560
578
.
43.
Tuah
,
H.
, and
Hudspeth
,
R. T.
,
1982
, “
Comparisons of Numerical Random Sea Simulations
,”
J. Waterw. Port Coast. Ocean Division
,
108
(
4
), pp.
569
584
.
44.
Cummins
,
W.
,
1962
, “
The Impulse Response Function and Ship Motion
,” Report 1661, Department of the Navy, David W. Taylor Model Basin, Hydromechanics Laboratory, Research and Development Report.
45.
Ogilvie
,
T. F.
,
1964
, “
Recent Progress Toward the Understanding and Prediction of Ship Motions
,”
Proceedings of the 5th Symposium on Naval Hydrodynamics
,
Bergen, Norway
,
Sept. 10–12
, pp.
3
80
.
46.
Kristiansen
,
E.
,
Hjulstad
,
Å.
, and
Egeland
,
O.
,
2005
, “
State-Space Representation of Radiation Forces in Time-Domain Vessel Models
,”
Ocean Eng.
,
32
(
17–18
), pp.
2195
2216
.
47.
Kristiansen
,
E.
, and
Egeland
,
O.
,
2003
, “
Frequency-Dependent Added Mass in Models for Controller Design for Wave Motion Damping
,”
IFAC Proc. Vol.
,
36
(
21
), pp.
67
72
.
48.
Lewandowski
,
E. M.
,
2008
, “
Multi-Vessel Seakeeping Computations With Linear Potential Theory
,”
Ocean Eng.
,
35
(
11–12
), pp.
1121
1131
.
49.
Newman
,
J. N.
,
1977
, “
The Motions of a Floating Slender Torus
,”
J. Fluid Mech.
,
83
(
4
), pp.
721
735
.
50.
Warminski
,
J.
, and
Kecik
,
K.
,
2009
, “
Instabilities in the Main Parametric Resonance Area of a Mechanical System With a Pendulum
,”
J. Sound Vib.
,
322
(
3
), pp.
612
628
.
51.
Xie
,
L.
,
Baguet
,
S.
,
Prabel
,
B.
, and
Dufour
,
R.
,
2017
, “
Bifurcation Tracking by Harmonic Balance Method for Performance Tuning of Nonlinear Dynamical Systems
,”
Mech. Syst. Signal Process.
,
88
, pp.
445
461
.
52.
Tay
,
Z. Y.
, and
Venugopal
,
V.
,
2019
, “
The Impact of Energy Extraction of Wave Energy Converter Arrays on Wave Climate Under Multi-directional Seas
,”
J. Ocean Eng. Mar. Energy
,
5
, pp.
51
72
.
53.
Ulazia
,
A.
,
Penalba
,
M.
,
Ibarra-Berastegui
,
G.
,
Ringwood
,
J.
, and
Sáenz
,
J.
,
2019
, “
Reduction of the Capture Width of Wave Energy Converters Due to Long-Term Seasonal Wave Energy Trends
,”
Renew. Sustain. Energy Rev.
,
113
, p.
109267
.
54.
Tay
,
Z. Y.
,
2019
, “
Energy Extraction From an Articulated Plate Anti-motion Device of a Very Large Floating Structure Under Irregular Waves
,”
Renew. Energy
,
130
, pp.
206
222
.
55.
Guillou
,
N.
,
2020
, “
Estimating Wave Energy Flux From Significant Wave Height and Peak Period
,”
Renew. Energy
,
155
, pp.
1383
1393
.
You do not currently have access to this content.