Abstract

Operational modal analysis (OMA) has recently been applied to the condition monitoring of rotating machinery. Conventional OMA is based on a one-dimensional signal. The natural modes of a rotating machinery can be classified into two types: a forward whirling mode and a backward whirling mode. Although the magnitudes of the natural frequencies of these two modes are separated by the gyroscopic effect, they can become close to each other and difficult to distinguish. This characteristic may make it difficult to apply conventional OMA based on a one-dimensional signal to rotating machinery. To monitor and diagnose the rotating machinery in the operating condition with high precision, it is necessary to develop the OMA method that can separate this information of the forward and backward whirling modes and can accurately estimate the vibration characteristics of each mode. However, only one previous report has addressed the application of OMA to rotating machinery with the capability of separating whirling direction information, and this approach requires an excitation signal. In this study, a novel OMA method, referred to as full OMA, has been developed, which is capable of separating forward and backward whirling direction information without the need for an excitation signal. To achieve this, signal data in both the x and y directions are acquired, and their autocorrelation and cross-correlation functions are calculated and combined as complex numbers. Spectral analysis of these functions yields a pseudo–full frequency response function (FRF), from which modal parameters for each whirling direction can be estimated. The validity and usefulness of the proposed full OMA method have been confirmed through both theoretical analysis and experimental validation. This full OMA method enables the accurate estimation of vibration characteristics for each whirling direction, even when the forward and backward natural frequencies are in close proximity. Consequently, the proposed full OMA method is highly effective for monitoring and diagnosing rotating machinery.

References

1.
Zahid
,
F. B.
,
Ong
,
Z. C.
, and
Khoo
,
S. Y.
,
2020
, “
A Review of Operational Modal Analysis Techniques for In-Service Modal Identification
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
398
), p.
18
.
2.
Bendat
,
J.
, and
Piersol
,
A.
,
1980
,
Engineering Applications of Correlation and Spectral Analysis
,
Wiley
,
New York
, p.
302
.
3.
Zhang
,
L.
,
Wang
,
T.
, and
Tamura
,
Y.
,
2010
, “
A Frequency–Spatial Domain Decomposition (FSDD) Method for Operational Modal Analysis
,”
Mech. Syst. Signal Process.
,
24
(
5
), pp.
1227
1239
.
4.
Brincker
,
R.
,
Zhang
,
L.
, and
Andersen
,
P.
,
2000
, “
Modal Identification From Ambient Responses Using Frequency Domain Decomposition
,”
Proceedings of the International Modal Analysis Conference
,
San Antonio, TX
,
Feb. 7–10
, Vol.
1
, pp.
625
630
.
5.
Brincker
,
R.
,
Ventura
,
C.
, and
Andersen
,
P.
,
2001
, “
Damping Estimation by Frequency Domain Decomposition
,”
Proceedings of the International Modal Analysis Conference
,
Orlando, FL
,
Feb. 5–8
, Vol.
1
, pp.
698
703
.
6.
Qu
,
C.-X.
,
Liu
,
Y.-F.
,
Yi
,
T.-H.
, and
Li
,
H.-N.
,
2023
, “
Structural Damping Ratio Identification Through Iterative Frequency Domain Decomposition
,”
J. Struct. Eng.
,
149
(
5
), p.
10
.
7.
Kim
,
B. H.
,
Stubbs
,
N.
, and
Park
,
T.
,
2005
, “
A New Method to Extract Modal Parameters Using Output-Only Responses
,”
J. Sound Vib.
,
282
(
1–2
), pp.
215
230
.
8.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1996
,
Subspace Identification for Linear Systems
,
Springer
,
New York
, p.
272
.
9.
Reynders
,
E.
,
Pintelon
,
R.
, and
De Roeck
,
G.
,
2008
, “
Uncertainty Bounds on Modal Parameters Obtained From Stochastic Subspace Identification
,”
Mech. Syst. Signal Process
,
22
(
4
), pp.
948
969
.
10.
Brincker
,
R.
, and
Andersen
,
P.
,
2006
, “
Understanding Stochastic Subspace Identification
,”
Conference Proceedings: IMAC-XXIV: A Conference & Exposition on Structural Dynamics
,
St. Louis, MO
,
Jan. 30–Feb. 2
, p.
6
.
11.
James
,
G.
,
Carne
,
T. G.
, and
Laufer
,
J. P.
,
1995
, “
The Natural Excitation Technique (NExT) for Modal Parameter Extraction From Operating Structures
,”
Modal Anal. Int. J. Anal. Exp. Modal Anal.
,
10
(
4
), pp.
260
277
.
12.
Nagae
,
N.
,
Watase
,
M.
, and
Tamaki
,
T.
, “
Operational Modal Analysis Using Cross Correlation Function
,”
J. Struct. Eng.
,
57A
, pp.
232
241
(in Japanese).
13.
Dion
,
J.-L.
,
Tawfiq
,
I.
, and
Chevallier
,
G.
,
2012
, “
Harmonic Component Detection: Optimized Spectral Kurtosis for Operational Modal Analysis
,”
Mech. Syst. Signal Process
,
26
, pp.
24
33
.
14.
Dong
,
X.
,
Lian
,
J.
,
Yang
,
M.
, and
Wang
,
H.
,
2014
, “
Operational Modal Identification of Offshore Wind Turbine Structure Based on Modified Stochastic Subspace Identification Method Considering Harmonic Interference
,”
J. Renewable Sustainable Energy
,
6
(
3
), p.
30
.
15.
Randall
,
R. B.
,
Coats
,
M. D.
, and
Smith
,
W. A.
,
2016
, “
Repressing the Effects of Variable Speed Harmonic Orders in Operational Modal Analysis
,”
Mech. Syst. Signal Process
,
79
, pp.
3
15
.
16.
Gres
,
S.
,
Andersen
,
P.
, and
Damkilde
,
L.
,
2018
, “
Operational Modal Analysis of Rotating Machinery
,”
Proceedings of the 36th IMAC, A Conference and Exposition onStructural Dynamics 2018
,
Orlando, FL
,
Mar. 12–15
, Vol.
7
, pp.
67
75
.
17.
Gres
,
S.
,
Andersen
,
P.
,
Hoen
,
C.
, and
Damkilde
,
L.
,
2018
, “
Orthogonal Projection-Based Harmonic Signal Removal for Operational Modal Analysis
,”
Proceedings of the 36th IMAC, A Conference and Exposition onStructural Dynamics 2018
, Orlando, FL, Mar. 12–15, Vol.
6
, pp.
9
21
.
18.
Mendrok
,
K.
,
Dziedziech
,
K.
, and
Kurowski
,
P.
,
2020
, “
Detection of Structural Abnormality of Industrial Rotary Machine Using DRS-Aided Operational Modal Analysis
,”
Measurement
,
164
, p.
13
.
19.
Storti
,
G. C.
,
Carrer
,
L.
,
da Silva Tuckmantel
,
F. W.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
, and
Bachschmid
,
N.
,
2021
, “
Simulating Application of Operational Modal Analysis to a Test Rig
,”
Mech. Syst. Signal Process
,
153
, p.
107529
.
20.
Greś
,
S.
,
Döhler
,
M.
,
Andersen
,
P.
, and
Mevel
,
L.
,
2021
, “
Kalman Filter-Based Subspace Identification for Operational Modal Analysis Under Unmeasured Periodic Excitation
,”
Mech. Syst. Signal Process
,
146
, p.
106996
.
21.
Chen
,
W.
,
Jin
,
M.
,
Huang
,
J.
,
Chen
,
Y.
, and
Song
,
H.
,
2021
, “
A Method to Distinguish Harmonic Frequencies and Remove the Harmonic Effect in Operational Modal Analysis of Rotating Structures
,”
Mech. Syst. Signal Process
,
161
, p.
23
.
22.
Daems
,
P. J.
,
Peeters
,
C.
,
Guillaume
,
P.
, and
Helsen
,
J.
,
2022
, “
Removal of Non-Stationary Harmonics for Operational Modal Analysis in Time and Frequency Domain
,”
Mech. Syst. Signal Process
,
165
, p.
108329
.
23.
Carden
,
E. P.
, and
Lindblad
,
M.
,
2015
, “
Operational Modal Analysis of Torsional Modes in Rotating Machinery
,”
ASME. J. Eng. Gas Turbines Power.
,
137
(
2
), p.
022501
.
24.
Storti
,
G.
, and
Machado
,
T.
,
2021
, “
The Use of Operational Modal Analysis in the Process of Modal Parameters Identification in a Rotating Machine Supported by Roller Bearings
,”
J. Mech. Sci. Technol.
,
35
(
2
), pp.
471
480
.
25.
Saint Martin
,
L. B.
,
Gusmão
,
L. L.
,
Machado
,
T. H.
,
Okabe
,
E. P.
, and
Cavalca
,
K. L.
,
2021
, “
Operational Modal Analysis Application to Support Structure Identification Under Rotating Machinery Unbalance
,”
Eng. Struct.
,
249
, p.
14
.
26.
Storti
,
G. C.
,
da Silva Tuckmantel
,
F. W.
, and
Machado
,
T. H.
,
2021
, “
Modal Parameters Identification of a Rotor-Journal Bearing System Using Operational Modal Analysis
,”
J Braz. Soc. Mech. Sci. Eng
,
43
(
3
), p.
14
.
27.
Amer
,
M.
,
Wallaschek
,
J.
, and
Seume
,
J. R.
,
2022
, “
Operational Modal Analysis of an Axial Compressor Rotor and Casing System for the Online Identification of a Digital Twin
,”
Appl. Mech.
,
3
(
1
), pp.
244
258
.
28.
Ishida
,
Y.
, and
Yamamoto
,
T.
,
2012
,
Linear and Nonlinear Rotordynamics: A Modern Treatment With Applications
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Hoboken, NJ
.
29.
Kunori
,
Y.
,
Inoue
,
T.
, and
Miyake
,
K.
,
2021
, “
Two-Way Coupled Shooting Analysis of Fluid Force in the Annular Plain Seal and Vibration of the Rotor System
,”
ASME J. Vib. Acoust.
,
143
(
5
), p.
051006
.
30.
Ren
,
Y.
,
Su
,
D.
, and
Fang
,
J.
,
2013
, “
Whirling Modes Stability Criterion for a Magnetically Suspended Flywheel Rotor With Significant Gyroscopic Effects and Bending Modes
,”
IEEE Trans. Power Electron.
,
28
(
12
), pp.
5890
5901
.
31.
Ahmad
,
S.
,
2010
, “
Rotor Casing Contact Phenomenon in Rotor Dynamics—Literature Survey
,”
J. Vib. Control
,
16
(
9
), pp.
1369
1377
.
32.
Li
,
Q.
,
Weaver
,
B.
,
Chu
,
F.
, and
Wang
,
W.
,
2020
, “
A Fast Damping Ratio Identification Method for Rotating Machinery Based on the Singular Value of a Directional Power Spectra Density Function Matrix
,”
J. Sound Vib.
,
488
, p. 115630.
33.
Dreher
,
R. D.
,
Storti
,
G. C.
, and
Machado
,
T. H.
,
2022
, “
Directional Coordinates for the Identification of Backward and Forward Frequencies of Rotating Machines via OMA
,”
Proceedings of the International Operational Modal Analysis Conference
,
Vancouver, BC, Canada
,
July 3–6
.
34.
Ishida
,
Y.
,
Yasuda
,
K.
, and
Murakami
,
S.
,
1997
, “
Nonstationary Oscillation of a Rotating Shaft With Nonlinear Spring Characteristics During Acceleration Through a Major Critical Speed (a Discussion by the Asymptotic Method and the Complex-FFT Method)
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
31
36
.
35.
Ishida
,
Y.
, and
Inoue
,
T.
,
2004
, “
Internal Resonance Phenomena of the Jeffcott Rotor With Nonlinear Spring Characteristics
,”
ASME J. Vib. Acoust
,
126
(
4
), pp.
476
484
.
36.
Ishida
,
Y.
,
Inagaki
,
M.
,
Ejima
,
R.
, and
Hayashi
,
A.
,
2009
, “
Nonlinear Resonances and Self-Excited Oscillations of a Rotor Caused by Radial Clearance and Collision
,”
Nonlinear Dyn.
,
57
(
4
), pp.
593
605
.
37.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley-Interscience
,
Hoboken, NJ
.
38.
Miyake
,
K.
,
Inoue
,
T.
, and
Watanabe
,
Y.
,
2019
, “
Two-Way Coupling Fluid-Structure Interaction Analysis and Tests of Shaft Vibration and Clearance Flow Across Plain Annular Seal
,”
ASME J. Appl. Mech.
,
86
(
10
), p.
101002
.
39.
Kimura
,
S.
,
Inoue
,
T.
,
Taura
,
H.
, and
Heya
,
A.
,
2024
, “
Influence of Unbalance and Differential Pressure on the Stability of Vertical Rotor-Seal System
,”
ASME. J. Comput. Nonlinear Dyn.
,
19
(
7
), p.
071004
.
You do not currently have access to this content.